Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Inducing stable reversion to achieve cancer control

Abstract

How can we stop cancer progression? Current strategies depend on modelling progression as the balanced outcome of mutations in, and expression of, tumour suppressor genes and oncogenes. New treatments emerge from successful attempts to tip that balance, but secondary mutational escape from those treatments has become a major impediment because it leads to resistance. In this Opinion article, we argue for a return to an earlier stratagem: tumour cell reversion. Treatments based on selection and analysis of stable revertants could create more durable remissions by reducing the selective pressure that leads to rapid drug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of stable reversion.
Figure 2: Proposed studies of genetic reversion of cancer cells.

Similar content being viewed by others

References

  1. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    Article  CAS  Google Scholar 

  2. Huang, S. & Ingber, D. E. The structural and mechanical complexity of cell-growth control. Nat. Cell Biol. 1, E131–E138 (1999).

    Article  CAS  Google Scholar 

  3. Luria, S. E. & Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pollack, R. E., Green, H. & Todaro, G. J. Growth control in cultured cells: selection of sublines with increased sensitivity to contact inhibition and decreased tumor-producing ability. Proc. Natl Acad. Sci. USA 60, 126 (1968).

    Article  CAS  Google Scholar 

  5. Steinberg, B., Pollack, R., Topp, W. & Botchan, M. Isolation and characterization of T antigen-negative revertants from a line of transformed rat cells containing one copy of the SV40 genome. Cell 13, 19–32 (1978).

    Article  CAS  Google Scholar 

  6. Varmus, H. E., Quintrell, N. & Wyke, J. Revertants of an ASV-transformed rat cell line have lost the complete provius or sustained mutations in src. Virology 108, 28–46 (1981).

    Article  CAS  Google Scholar 

  7. Pollack, R., Wolman, S. & Vogel, A. Reversion of virus-transformed cell lines: hyperploidy accompanies retention of viral genes. Nature 228, 938 (1970).

    Article  Google Scholar 

  8. Shin, S.-I., Freedman, V. H., Risser, R. & Pollack, R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc. Natl Acad. Sci. USA 72, 4435–4439 (1975).

    Article  CAS  Google Scholar 

  9. Noda, M., Selinger, Z., Scolnick, E. M. & Bassin, R. H. Flat revertants isolated from Kirsten sarcoma virus-transformed cells are resistant to the action of specific oncogenes. Proc. Natl Acad. Sci. USA 80, 5602–5606 (1983).

    Article  CAS  Google Scholar 

  10. Fujita, H. et al. A specific protein, p92, detected in flat revertants derived from NIH/3T3 transformed by human activated c-Ha-ras oncogene. Exp. Cell Res. 186, 115–121 (1990).

    Article  CAS  Google Scholar 

  11. Noda, M. et al. Detection of genes with a potential for suppressing the transformed phenotype associated with activated ras genes. Proc. Natl Acad. Sci. USA 86, 162–166 (1989).

    Article  CAS  Google Scholar 

  12. Weinberg, R. A. Tumor suppressor genes. Science 254, 1138–1146 (1991).

    Article  CAS  Google Scholar 

  13. White, D. E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6, 159–170 (2004).

    Article  CAS  Google Scholar 

  14. Rogers, M. S. et al. Spontaneous reversion of the angiogenic phenotype to a nonangiogenic and dormant state in human tumors. Mol. Cancer Res. 12, 754–764 (2014).

    Article  CAS  Google Scholar 

  15. Van Dyke, T. & Jacks, T. Cancer modeling in the modern era: progress and challenges. Cell 108, 135–144 (2002).

    Article  CAS  Google Scholar 

  16. Telerman, A. & Amson, R. The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat. Rev. Cancer 9, 206–216 (2009).

    Article  CAS  Google Scholar 

  17. Bhat, A. A. et al. Claudin-7 expression induces mesenchymal to epithelial transformation (MET) to inhibit colon tumorigenesis. Oncogene 34, 4570–4580 (2015).

    Article  CAS  Google Scholar 

  18. Lespagnol, A. et al. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 15, 1723–1733 (2008).

    Article  CAS  Google Scholar 

  19. Tuynder, M. et al. Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc. Natl Acad. Sci. USA 99, 14976–14981 (2002).

    Article  CAS  Google Scholar 

  20. Yu, X., Harris, S. L. & Levine, A. J. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66, 4795–4801 (2006).

    Article  CAS  Google Scholar 

  21. Fujita, K. et al. Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence. Nat. Cell Biol. 12, 1205–1212 (2010).

    Article  CAS  Google Scholar 

  22. Roperch, J.-P. et al. Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nat. Med. 4, 835–838 (1998).

    Article  CAS  Google Scholar 

  23. Yang, X. et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol. 269, 81–94 (2004).

    Article  CAS  Google Scholar 

  24. Susini, L. et al. Siah-1 binds and regulates the function of Numb. Proc. Natl Acad. Sci. USA 98, 15067–15072 (2001).

    Article  CAS  Google Scholar 

  25. Amson, R. et al. Reciprocal repression between P53 and TCTP. Nat. Med. 18, 91–99 (2012).

    Article  CAS  Google Scholar 

  26. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  Google Scholar 

  27. McCormick, F. KRAS as a therapeutic target. Clin. Cancer Res. 21, 1797–1801 (2015).

    Article  CAS  Google Scholar 

  28. Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    Article  CAS  Google Scholar 

  29. Diaz Jr, L. A. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    Article  CAS  Google Scholar 

  30. Soverini, S. et al. Resistance to dasatinib in Philadelphia-positive leukemia patients and the presence or the selection of mutations at residues 315 and 317 in the BCR-ABL kinase domain. Haematologica 92, 401–404 (2007).

    Article  CAS  Google Scholar 

  31. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

    Article  CAS  Google Scholar 

  32. Augeron, C. & Laboisse, C. L. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res. 44, 3961–3969 (1984).

    CAS  PubMed  Google Scholar 

  33. Ablain, J., Nasr, R., Bazarbachi, A. & de The, H. The drug-induced degradation of oncoproteins: an unexpected Achilles' heel of cancer cells? Cancer Discov. 1, 117–127 (2011).

    Article  CAS  Google Scholar 

  34. Nardella, C., Clohessy, J. G., Alimonti, A. & Pandolfi, P. P. Pro-senescence therapy for cancer treatment. Nat. Rev. Cancer 11, 503–511 (2011).

    Article  CAS  Google Scholar 

  35. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  Google Scholar 

  36. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  Google Scholar 

  37. Leekha, S., Terrell, C. L. & Edson, R. S. General priniples of antimicrobial therapy. Mayo Clinic Proc. 86, 156–167 (2011).

    Article  Google Scholar 

  38. Stent, G. S. Max Delbruck, 1906–1981. Genetics 101, 1–16 (1982).

    CAS  PubMed  Google Scholar 

  39. Watson, J. D. Salvador, E. Luria (13 August 1912–6 February 1991). Proc. Am. Philos. Soc. 143, 681–683 (1999).

    CAS  PubMed  Google Scholar 

  40. Werner, R. Nature of DNA precursors. Nature 233, 99–103 (1971).

    CAS  Google Scholar 

  41. De Lucia, P. & Cairns, J. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature 224, 1164–1166 (1969).

    Article  CAS  Google Scholar 

  42. Cairns, J. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol. 6, 208–213 (1963).

    Article  CAS  Google Scholar 

  43. Potten, C. S., Hume, W. J., Reid, P. & Cairns, J. The segregation of DNA in epithelial stem cells. Cell 15, 899–906 (1978).

    Article  CAS  Google Scholar 

  44. Cairns, J. & Foster, P. L. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128, 695–701 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Maisnier-Patin, S. & Roth, J. R. The origin of mutants under selection: how natural selection mimics mutagenesis (adaptive mutation). Cold Spring Harb. Perspect. Biol. 7, a018176 (2015).

    Article  Google Scholar 

  46. Vogel, A. & Pollack, R. Isolation and characterization of revertant cell lines. IV. Direct selection of serum-revertant sublines of SV40-transformed 3T3 mouse cells. J. Cell. Physiol. 82, 189–198 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott Powers or Robert E. Pollack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powers, S., Pollack, R. Inducing stable reversion to achieve cancer control. Nat Rev Cancer 16, 266–270 (2016). https://doi.org/10.1038/nrc.2016.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.12

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer