Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Biomaterials and emerging anticancer therapeutics: engineering the microenvironment

Abstract

The microenvironment is increasingly recognized to have key roles in cancer, and biomaterials provide a means to engineer microenvironments both in vitro and in vivo to study and manipulate cancer. In vitro cancer models using 3D matrices recapitulate key elements of the tumour microenvironment and have revealed new aspects of cancer biology. Cancer vaccines based on some of the same biomaterials have, in parallel, allowed for the engineering of durable prophylactic and therapeutic anticancer activity in preclinical studies, and some of these vaccines have moved to clinical trials. The impact of biomaterials engineering on cancer treatment is expected to further increase in importance in the years to come.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Creating new microenvironments in vitro and in vivo using biomaterials.
Figure 2: Biomaterials to create 3D in vitro human tumour models.
Figure 3: Biomaterial-based cancer immunotherapies.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  2. Whiteside, T. L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904–5912 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Iyer, A. K., Khaled, G., Fang, J. & Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11, 812–818 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Heldin, C.-H., Rubin, K., Pietras, K. & Östman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Goel, S. et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Howell, S. B., Safaei, R., Larson, C. A. & Sailor, M. J. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol. Pharmacol. 77, 887–894 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nguyen, Q. T. & Tsien, R. Y. Fluorescence-guided surgery with live molecular navigation — a new cutting edge. Nat. Rev. Cancer 13, 653–662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, L. et al. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Zamboni, W. C. et al. Best practices in cancer nanotechnology: perspective from NCI Nanotechnology Alliance. Clin. Cancer Res. 18, 3229–3241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Davis, M. E. & Chen, Z. (G.) & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Binnig, G. & Rohrer, H. Scanning tunneling microscopy. IBM J. Res. Dev. 30, 355–369 (1986).

    CAS  Google Scholar 

  23. Yu, G., Yan, X., Han, C. & Huang, F. Characterization of supramolecular gels. Chem. Soc. Rev. 42, 6697–6722 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Suggitt, M. & Bibby, M. C. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res. 11, 971–981 (2005).

    CAS  PubMed  Google Scholar 

  28. Pampaloni, F., Reynaud, E. G. & Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Gill, B. J. & West, J. L. Modeling the tumor extracellular matrix: tissue engineering tools repurposed towards new frontiers in cancer biology. J. Biomech. 47, 1969–1978 (2014).

    Article  PubMed  Google Scholar 

  30. Infanger, D. W., Lynch, M. E. & Fischbach, C. Engineered culture models for studies of tumor-microenvironment interactions. Annu. Rev. Biomed. Eng. 15, 29–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Song, H.-H. G., Park, K. M. & Gerecht, S. Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv. Drug Deliv. Rev. 79–80, 19–29 (2014).

  32. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmeichel, K. L. & Bissell, M. J. Modeling tissue-specific signaling and organ function in three dimensions. J. Cell Sci. 116, 2377–2388 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Hauptmann, S. et al. Integrin expression on colorectal tumor cells growing as monolayers, as multicellular tumor spheroids, or in nude mice. Int. J. Cancer 61, 819–825 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, F. et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl Acad. Sci. USA 95, 14821–14826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Elsdale, T. & Bard, J. Collagen substrata for studies on cell behavior. J. Cell Biol. 54, 626–637 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gill, B. J. et al. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 72, 6013–6023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cross, V. L. et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 31, 8596–8607 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seano, G. et al. Modeling human tumor angiogenesis in a three-dimensional culture system. Blood 121, e129–e137 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Dolznig, H. et al. Modeling colon adenocarcinomas in vitro. Am. J. Pathol. 179, 487–501 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sung, K. E. et al. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS ONE 8, e76373 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sieh, S. et al. Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis. Bone 63, 121–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Feder-Mengus, C. et al. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes. Br. J. Cancer 96, 1072–1082 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirt, C. et al. 'In vitro' 3D models of tumor-immune system interaction. Adv. Drug Deliv. Rev. 79–80, 145–154 (2014).

  45. Dangles-Marie, V. et al. A three-dimensional tumor cell defect in activating autologous ctls is associated with inefficient antigen presentation correlated with heat shock protein-70 down-regulation. Cancer Res. 63, 3682–3687 (2003).

    CAS  PubMed  Google Scholar 

  46. He, W. et al. Proteomic comparison of 3D and 2D glioma models reveals increased HLA-E expression in 3D models is associated with resistance to NK cell-mediated cytotoxicity. J. Proteome Res. 13, 2272–2281 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Florczyk, S. J. et al. 3D porous chitosan–alginate scaffolds: a new matrix for studying prostate cancer cell–lymphocyte interactions in vitro. Adv. Healthc. Mater. 1, 590–599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. DeForest, C. A. & Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3, 925–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stevens, K. R. et al. InVERT molding for scalable control of tissue microarchitecture. Nat. Commun. 4, 1847 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. DuFort, C. C., Paszek, M. J. & Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12, 308–319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Ananthanarayanan, B., Kim, Y. & Kumar, S. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32, 7913–7923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6365 (2015).

    Article  CAS  Google Scholar 

  61. Derda, R. et al. Paper-supported 3D cell culture for tissue-based bioassays. Proc. Natl Acad. Sci. USA 106, 18457–18462 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Verbridge, S. S. et al. Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. Tissue Eng. Part A 16, 2133–2141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fischbach, C. et al. Cancer cell angiogenic capability is regulated by 3D culture and integrin engagement. Proc. Natl Acad. Sci. USA 106, 399–404 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Xu, X. et al. Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Biomaterials 33, 9049–9060 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buchanan, C. F. et al. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng. Part C Methods 20, 64–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. DeForest, C. A. & Anseth, K. S. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. 51, 1816–1819 (2012).

    Article  CAS  Google Scholar 

  67. Breslin, S. & O'Driscoll, L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov. Today 18, 240–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D. & Takayama, S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control. Release 164, 192–204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vinci, M. et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10, 29 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Myungjin Lee, J. et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab. Invest. 93, 528–542 (2013).

    Article  CAS  Google Scholar 

  71. Yip, D. & Cho, C. H. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Biochem. Biophys. Res. Commun. 433, 327–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Fong, E. L. S. et al. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc. Natl Acad. Sci. USA 110, 6500–6505 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fong, E. L. S. et al. Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening. Mol. Pharmacol. 11, 2040–2050 (2014).

    Article  CAS  Google Scholar 

  75. Phan-Lai, V. et al. Three-dimensional scaffolds to evaluate tumor associated fibroblast-mediated suppression of breast tumor specific T cells. Biomacromolecules 14, 1330–1337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Grolman, J. M., Zhang, D., Smith, A. M., Moore, J. S. & Kilian, K. A. Rapid 3D extrusion of synthetic tumor microenvironments. Adv. Mater. 27, 5512–5517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, C. Y., Wood, D. K., Huang, J. H. & Bhatia, S. N. Flow-based pipeline for systematic modulation and analysis of 3D tumor microenvironments. Lab. Chip 13, 1969–1978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kenny, P. A. et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1, 84–96 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gilbert, P. M. et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329, 1078–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, J. et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat. Mater. 11, 734–741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fischbach, C. et al. Engineering tumors with 3D scaffolds. Nat. Methods 4, 855–860 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Leung, M. et al. Chitosan–alginate scaffold culture system for hepatocellular carcinoma increases malignancy and drug resistance. Pharm. Res. 27, 1939–1948 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huh, D. et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4, 159ra147 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Xu, Z. et al. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34, 4109–4117 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Waldmann, T. A. Immunotherapy: past, present and future. Nat. Med. 9, 269–277 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lichty, B. D., Breitbach, C. J., Stojdl, D. F. & Bell, J. C. Going viral with cancer immunotherapy. Nat. Rev. Cancer 14, 559–567 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Dendreon bankrupt [News]. Nat. Biotechnol. 32, 1176–1176 (2014).

  97. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Klebanoff, C. A., Acquavella, N., Yu, Z. & Restifo, N. P. Therapeutic cancer vaccines: are we there yet? Immunol. Rev. 239, 27–44 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–780 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Palucka, K. & Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12, 265–277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Irvine, D. J., Swartz, M. A. & Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater. 12, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Johansen, P. et al. Antigen kinetics determines immune reactivity. Proc. Natl Acad. Sci. USA 105, 5189–5194 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8, 151–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ali, O. A., Emerich, D., Dranoff, G. & Mooney, D. J. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 1, 8ra19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. US National Library of Medicine. ClinicalTrials.gov [online].

  108. Ali, O. A., Tayalia, P., Shvartsman, D., Lewin, S. & Mooney, D. J. Inflammatory cytokines presented from polymer matrices differentially generate and activate DCs in situ. Adv. Funct. Mater. 23, 4621–4628 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ali, O. A. et al. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants. Cancer Res. 74, 1670–1681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ali, O. A. et al. The efficacy of intracranial PLG-based vaccines is dependent on direct implantation into brain tissue. J. Control. Release 154, 249–257 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Hori, Y., Winans, A. M., Huang, C. C., Horrigan, E. M. & Irvine, D. J. Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 29, 3671–3682 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Koshy, S. T., Ferrante, T. C., Lewin, S. A. & Mooney, D. J. Injectable, porous, and cell-responsive gelatin cryogels. Biomaterials 35, 2477–2487 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Kim, J. et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33, 64–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bencherif, S. A. et al. Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun. 6, 7556 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–1164 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Manolova, V. et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38, 1404–1413 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Fifis, T. et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Gu, L. et al. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv. Mater. 24, 3981–3987 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Raghuwanshi, D., Mishra, V., Suresh, M. R. & Kaur, K. A simple approach for enhanced immune response using engineered dendritic cell targeted nanoparticles. Vaccine 30, 7292–7299 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Cruz, L. J. et al. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8+ T cell response: a comparative study. J. Control. Release 192, 209–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Tacken, P. J. et al. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 118, 6836–6844 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tsopelas, C. & Sutton, R. Why certain dyes are useful for localizing the sentinel lymph node. J. Nucl. Med. 43, 1377–1382 (2002).

    CAS  PubMed  Google Scholar 

  125. Faries, M. B. et al. Active macromolecule uptake by lymph node antigen-presenting cells: a novel mechanism in determining sentinel lymph node status. Ann. Surg. Oncol. 7, 98–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Thomas, S. N., Vokali, E., Lund, A. W., Hubbell, J. A. & Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35, 814–824 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Jeanbart, L. et al. Enhancing efficacy of anti-cancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol. Res. 2, 436–447 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Gerner, M. Y., Torabi-Parizi, P. & Germain, R. N. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42, 172–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Kovacsovics-Bankowski, M. & Rock, K. L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267, 243–246 (1995).

    Article  CAS  PubMed  Google Scholar 

  130. Murthy, N. et al. A macromolecular delivery vehicle for protein-based vaccines: acid-degradable protein-loaded microgels. Proc. Natl Acad. Sci. USA 100, 4995–5000 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Scott, E. A. et al. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials 33, 6211–6219 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Li, W. A. & Mooney, D. J. Materials based tumor immunotherapy vaccines. Curr. Opin. Immunol. 25, 238–245 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Varkouhi, A. K., Scholte, M., Storm, G. & Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Control. Release 151, 220–228 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Moon, J. J. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 10, 243–251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hamdy, S. et al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26, 5046–5057 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Xu, Z. et al. Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. J. Control. Release 172, 259–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Garaude, J., Kent, A., Rooijen, N. & van Blander, J. M. Simultaneous targeting of Toll- and Nod-like receptors induces effective tumor-specific immune responses. Sci. Transl. Med. 4, 120ra16 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Li, A. V. et al. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci. Transl. Med. 5, 204ra130 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. Goldinger, S. M. et al. Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8+T-cell responses in melanoma patients. Eur. J. Immunol. 42, 3049–3061 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Flach, T. L. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17, 479–487 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, H. et al. Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal versus pyrolytic. J. Am. Chem. Soc. 134, 15790–15804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wilson, N. S. et al. Inflammasome-dependent and -independent IL-18 production mediates immunity to the ISCOMATRIX adjuvant. J. Immunol. 192, 3259–3268 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Frazer, I. H. et al. Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine 23, 172–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Thomas, S. N. et al. Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Biomaterials 32, 2194–2203 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Baitsch, L., Fuertes-Marraco, S. A., Legat, A., Meyer, C. & Speiser, D. E. The three main stumbling blocks for anticancer T cells. Trends Immunol. 33, 364–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Steenblock, E. R. & Fahmy, T. M. A comprehensive platform for ex vivo T-cell expansion based on biodegradable polymeric artificial antigen-presenting cells. Mol. Ther. 16, 765–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Perica, K., Kosmides, A. K. & Schneck, J. P. Linking form to function: biophysical aspects of artificial antigen presenting cell design. Biochim. Biophys. Acta 1853, 781–790 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Sunshine, J. C., Perica, K., Schneck, J. P. & Green, J. J. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 35, 269–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Zeng, R. et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med. 201, 139–148 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Schwartz, R. N., Stover, L. & Dutcher, J. Managing toxicities of high-dose interleukin-2. Oncol. Williston Park 16 (Suppl. 13), 11–20 (2002).

    Google Scholar 

  154. Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Stephan, M. T., Stephan, S. B., Bak, P., Chen, J. & Irvine, D. J. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials 33, 5776–5787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zheng, Y. et al. In vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomes. J. Control. Release 172, 426–435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol. 33, 97–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Barenholz, Y. Doxil® — the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Dolgin, E. Cancer vaccines: material breach. Nature 504, S16–S17 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  161. Chu, K. S. et al. Plasma, tumor and tissue pharmacokinetics of docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomed. Nanotechnol. Biol. Med. 9, 686–693 (2013).

    Article  CAS  Google Scholar 

  162. Park, J.-H. et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv. Mater. 20, 1630–1635 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sykes, E. A., Chen, J., Zheng, G. & Chan, W. C. W. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8, 5696–5706 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Hu, C.-M. J., Fang, R. H., Luk, B. T. & Zhang, L. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies. Nanoscale 6, 65 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Arvizo, R. R. et al. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS ONE 6, e24374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ruoslahti, E., Bhatia, S. N. & Sailor, M. J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol. 188, 759–768 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Batist, G. et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol. 19, 1444–1454 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Mross, K. et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother. Pharmacol. 54, 514–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Gradishar, W. J. et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23, 7794–7803 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Feldman, E. J. et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J. Clin. Oncol. 29, 979–985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lancet, J. E. et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, versus cytarabine/daunorubicin in older adults with untreated AML. Blood 123, 3239–3246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl Med. 4, 128ra39 (2012).

    Article  PubMed  Google Scholar 

  174. Sugahara, K. N. et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16, 510–520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Olson, E. S. et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl Acad. Sci. USA 107, 4311–4316 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Rodriguez, P. L. et al. Minimal 'self' peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hu, C.-M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gu, L. et al. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 4, 2326 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Dykman, L. & Khlebtsov, N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256–2282 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Schwartz, J. A. et al. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res. 69, 1659–1667 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Mahmoudi, M., Sant, S., Wang, B., Laurent, S. & Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Chi, X. et al. Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 33, 189–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Chikkaveeraiah, B. V., Bhirde, A. A., Morgan, N. Y., Eden, H. S. & Chen, X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6, 6546–6561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Relevant work in the authors' laboratory has been supported in part by a grant from the US National Institutes of Health (NIH) (R01 EB015498).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Mooney.

Ethics declarations

Competing interests

D.J.M. has pending patent applications on biomaterial-based cancer vaccine systems which are reviewed in this article. L.G. declares no competing interests.

PowerPoint slides

Glossary

Adjuvants

Substances that modify the immune responses to an antigen.

Bolus vaccination

Injection of vaccine components suspended in solution.

Cellular immune responses

Responses that involve the activation of phagocytes and antigen-specific cytotoxic T lymphocytes in response to an antigen.

Elastic modulus

A measure of a substance's resistance to being deformed elastically under force, as calculated by the ratio of applied stress to the resulting strain in the substance.

Elasticity

The ability of solid materials to return to their original shape after being deformed.

Electrospinning

An approach to the fabrication of nano- or microscale fibres through electrostatic repulsion-induced formation of a jet of a polymer solution.

Humoral immune responses

Used here to indicate responses that involve the activation of B cells to secrete antibodies to a specific antigen.

Interpenetrating polymer network

(IPN). A polymer comprising two or more networks that are interlaced on a molecular scale but not covalently bonded to each other.

Microfluidics

Technology that processes or manipulates small volumes of fluids using channels with dimensions of tens to hundreds of micrometres.

Photolithography

The process of transferring patterns onto a substrate using light and light-sensitive chemicals.

Pluronic copolymer

A block copolymer of polyethylene glycol and polypropylene glycol.

Sacrificial templates

Templates fabricated using materials that can be removed later to form desired void structures inside a scaffold.

Soft lithography

A technique for fabricating or replicating structures using elastomeric stamps or moulds.

Virus-like particle

(VLP). A protein structure that mimics the organization of a virus but lacks the viral genome.

Viscoelasticity

A property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscoelastic materials can flow under forces, but exhibit some elastic behaviour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Mooney, D. Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat Rev Cancer 16, 56–66 (2016). https://doi.org/10.1038/nrc.2015.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2015.3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer