Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The emerging roles of YAP and TAZ in cancer

Abstract

Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are the major downstream effectors of the Hippo pathway, which regulates tissue homeostasis, organ size, regeneration and tumorigenesis. In this Progress article, we summarize the current understanding of the biological functions of YAP and TAZ, and how the regulation of these two proteins can be disrupted in cancer. We also highlight recent findings on their expanding role in cancer progression and describe the potential of these targets for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of YAP and TAZ.
Figure 2: Pathway crosstalks regulate YAP and TAZ.
Figure 3: Tumour suppressor role of YAP.

Similar content being viewed by others

References

  1. Pan, D. The Hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).

    Article  CAS  Google Scholar 

  2. Harvey, K. F., Zhang, X. & Thomas, D. M. The Hippo pathway and human cancer. Nature Rev. Cancer 13, 246–257 (2013).

    Article  CAS  Google Scholar 

  3. Mo, J. S., Park, H. W. & Guan, K. L. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 15, 642–656 (2014).

    Article  CAS  Google Scholar 

  4. Johnson, R. & Halder, G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nature Rev. Drug Discov. 13, 63–79 (2014).

    Article  CAS  Google Scholar 

  5. Nishioka, N. et al. The Hippo signaling pathway components LATS and YAP pattern TEAD4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16, 398–410 (2009).

    Article  CAS  Google Scholar 

  6. Xin, M. et al. Hippo pathway effector YAP promotes cardiac regeneration. Proc. Natl Acad. Sci. USA 110, 13839–13844 (2013).

    Article  CAS  Google Scholar 

  7. Varelas, X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141, 1614–1626 (2014).

    Article  CAS  Google Scholar 

  8. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature Cell Biol. 15, 637–646 (2013).

    Article  CAS  Google Scholar 

  9. Zhang, J. et al. YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nature Cell Biol. 11, 1444–1450 (2009).

    Article  CAS  Google Scholar 

  10. Fujii, M. et al. TGFβ synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth. J. Exp. Med. 209, 479–494 (2012).

    Article  CAS  Google Scholar 

  11. Aragona, M. et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047–1059 (2013).

    Article  CAS  Google Scholar 

  12. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  Google Scholar 

  13. Friedl, P. & Alexander, S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992–1009 (2011).

    Article  CAS  Google Scholar 

  14. Tang, Y. et al. MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. Dev. Cell 25, 402–416 (2013).

    Article  CAS  Google Scholar 

  15. Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26, 54–68 (2012).

    Article  Google Scholar 

  16. Codelia, V. A., Sun, G. & Irvine, K. D. Regulation of YAP by mechanical strain through JNK and Hippo signaling. Curr. Biol. 24, 2012–2017 (2014).

    Article  CAS  Google Scholar 

  17. Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012).

    Article  CAS  Google Scholar 

  18. Zhao, B. et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 25, 51–63 (2011).

    Article  Google Scholar 

  19. Adler, J. J. et al. Serum deprivation inhibits the transcriptional co-activator YAP and cell growth via phosphorylation of the 130-kDa isoform of Angiomotin by the LATS1/2 protein kinases. Proc. Natl Acad. Sci. USA 110, 17368–17373 (2013).

    Article  CAS  Google Scholar 

  20. O'Hayre, M. et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nature Rev. Cancer 13, 412–424 (2013).

    Article  CAS  Google Scholar 

  21. Chen, D. et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo–YAP pathway and a prognostic marker. Nature Med. 18, 1511–1517 (2012).

    Article  CAS  Google Scholar 

  22. Fan, R., Kim, N. G. & Gumbiner, B. M. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc. Natl Acad. Sci. USA 110, 2569–2574 (2013).

    Article  CAS  Google Scholar 

  23. Azzolin, L. et al. YAP/TAZ incorporation in the β-Catenin destruction complex orchestrates the WNT response. Cell 158, 157–170 (2014).

    Article  CAS  Google Scholar 

  24. Barry, E. R. et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 493, 106–110 (2013).

    Article  Google Scholar 

  25. Heallen, T. et al. Hippo pathway inhibits WNT signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011).

    Article  CAS  Google Scholar 

  26. Rosenbluh, J. et al. β-catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457–1473 (2012).

    Article  CAS  Google Scholar 

  27. Varelas, X. et al. The Hippo pathway regulates WNT/β-catenin signaling. Dev. Cell 18, 579–591 (2010).

    Article  CAS  Google Scholar 

  28. Varelas, X. et al. TAZ controls SMAD nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biol. 10, 837–848 (2008).

    Article  CAS  Google Scholar 

  29. Alarcon, C. et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGFβ pathways. Cell 139, 757–769 (2009).

    Article  CAS  Google Scholar 

  30. Attisano, L. & Wrana, J. L. Signal integration in TGFβ, WNT, and Hippo pathways. F1000Prime Rep. 5, 17 (2013).

    Article  Google Scholar 

  31. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet. 39, 673–677 (2007).

    Article  CAS  Google Scholar 

  32. Mori, M. et al. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell 156, 893–906 (2014).

    Article  CAS  Google Scholar 

  33. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    Article  CAS  Google Scholar 

  34. Chaulk, S. G., Lattanzi, V. J., Hiemer, S. E., Fahlman, R. P. & Varelas, X. The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7. J. Biol. Chem. 289, 1886–1891 (2014).

    Article  CAS  Google Scholar 

  35. Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078 (2005).

    Article  CAS  Google Scholar 

  36. Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759–772 (2011).

    Article  CAS  Google Scholar 

  37. Skibinski, A. et al. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment. Cell Rep. 6, 1059–1072 (2014).

    Article  CAS  Google Scholar 

  38. Yimlamai, D. et al. Hippo pathway activity influences liver cell fate. Cell 157, 1324–1338 (2014).

    Article  CAS  Google Scholar 

  39. Chan, S. W. et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 68, 2592–2598 (2008).

    Article  CAS  Google Scholar 

  40. Reginensi, A. et al. YAP- and CDC42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 9, e1003380 (2013).

    Article  CAS  Google Scholar 

  41. Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27–38 (2010).

    Article  CAS  Google Scholar 

  42. Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 26, 1300–1305 (2012).

    Article  CAS  Google Scholar 

  43. Zhang, W. et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci. Signal. 7, ra42 (2014).

    Article  Google Scholar 

  44. Kapoor, A. et al. YAP1 activation enables bypass of oncogenic kras addiction in pancreatic cancer. Cell 158, 185–197 (2014).

    Article  CAS  Google Scholar 

  45. Shao, D. D. et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171–184 (2014).

    Article  CAS  Google Scholar 

  46. Shackelford, D. B. & Shaw, R. J. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nature Rev. Cancer 9, 563–575 (2009).

    Article  CAS  Google Scholar 

  47. Mohseni, M. et al. A genetic screen identifies an LKB1–MARK signalling axis controlling the Hippo–YAP pathway. Nature Cell Biol. 16, 108–117 (2014).

    Article  CAS  Google Scholar 

  48. Tumaneng, K. et al. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nature Cell Biol. 14, 1322–1329 (2012).

    Article  CAS  Google Scholar 

  49. Feng, X. et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25, 831–845 (2014).

    Article  CAS  Google Scholar 

  50. Yu, F. X. et al. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 25, 822–830 (2014).

    Article  CAS  Google Scholar 

  51. Wang, L. et al. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS ONE 8, e65539 (2013).

    Article  CAS  Google Scholar 

  52. Liu, G. et al. Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway. Oncogene http://dx.doi.org/10.1038/onc.2014.281 (2014).

  53. Nguyen, H. T. et al. Viral small T oncoproteins transform cells by alleviating Hippo-pathway-mediated inhibition of the YAP proto-oncogene. Cell Rep. 8, 707–713 (2014).

    Article  CAS  Google Scholar 

  54. Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A. & Nishida, E. A molecular mechanism that links Hippo signalling to the inhibition of WNT/β-catenin signalling. EMBO J. 31, 1109–1122 (2012).

    Article  CAS  Google Scholar 

  55. Levy, D., Adamovich, Y., Reuven, N. & Shaul, Y. YAP1 phosphorylation by c-ABL is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol. Cell 29, 350–361 (2008).

    Article  CAS  Google Scholar 

  56. Cottini, F. et al. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nature Med. 20, 599–606 (2014).

    Article  CAS  Google Scholar 

  57. Yoo, H. Y. et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nature Genet. 46, 371–375 (2014).

    Article  CAS  Google Scholar 

  58. Koontz, L. M. et al. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev. Cell 25, 388–401 (2013).

    Article  CAS  Google Scholar 

  59. Jiao, S. et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166–180 (2014).

    Article  CAS  Google Scholar 

  60. Sorrentino, G. et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nature Cell Biol. 16, 357–366 (2014).

    Article  CAS  Google Scholar 

  61. Wang, Z. et al. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc. Natl Acad. Sci. USA 111, E89–E98 (2014).

    Article  CAS  Google Scholar 

  62. Gronich, N. & Rennert, G. Beyond aspirin-cancer prevention with statins, metformin and bisphosphonates. Nature Rev. Clin. Oncol. 10, 625–642 (2013).

    Article  CAS  Google Scholar 

  63. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  Google Scholar 

  64. Nguyen, H. B., Babcock, J. T., Wells, C. D. & Quilliam, L. A. LKB1 tumor suppressor regulates AMP kinase/mTOR-independent cell growth and proliferation via the phosphorylation of YAP. Oncogene 32, 4100–4109 (2013).

    Article  CAS  Google Scholar 

  65. Moya, I. M. & Halder, G. Discovering the Hippo pathway protein–protein interactome. Cell Res. 24, 137–138 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to their colleagues whose work could not be cited owing to space limitations and the scope of a Progress article. The authors would like to thank all the members of the Guan laboratory for insightful discussions and critical comments. The work in the Guan laboratory was supported by US National Institutes of Health (NIH) grants (CA132809 and EY022611) to K.-L.G. T.M. is supported by the Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad and by a grant from the Yasuda Medical Foundation. C.G.H. is supported by a Postdoctoral Fellowship from the Danish Council for Independent Research | Natural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Liang Guan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroishi, T., Hansen, C. & Guan, KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer 15, 73–79 (2015). https://doi.org/10.1038/nrc3876

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing