Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifaceted functions of sirtuins in cancer

Key Points

  • Sirtuins are NAD+-dependent enzymes that modulate the activities of target proteins, mediate changes in the metabolic status of cells and regulate diseases of ageing, including neurodegeneration, diabetes, cardiovascular diseases and cancer.

  • Sirtuin 1 (SIRT1) was the first sirtuin to be shown to be involved in cancer. It was demonstrated that SIRT1 represses p53-mediated tumour suppression. Since this finding, SIRT1 has been shown to have both tumour-suppressive and oncogenic roles, depending on the type and stage of cancer.

  • The mitochondrial sirtuin SIRT3 regulates levels of reactive oxygen species (ROS). Loss of SIRT3 results in increased levels of ROS, with subsequent activation of hypoxia-inducible factor 1α (HIF1α) and increased expression of HIF1 target genes, including glycolysis and angiogenesis genes, which favour tumour growth.

  • The mitochondrial sirtuin SIRT4 regulates glutamine metabolism by inhibiting glutamate dehydrogenase (GDH), the rate-limiting enzyme in glutaminolysis. Loss of SIRT4 leads to increased glutamine catabolism, a pathway that promotes tumour growth.

  • The chromatin-bound sirtuin SIRT6 regulates cancer metabolism and inflammation by acting as a co-repressor for HIF1α, MYC and nuclear factor-κB (NF-κB). Loss of SIRT6 results in increased expression of glycolysis, glutaminolysis and ribosomal genes, all of which favour proliferation and tumorigenesis.

  • SIRT1 and SIRT6 promote genomic stability by regulating both single- and double-strand DNA break-repair pathways.

Abstract

The sirtuins (SIRTs; of which there are seven in mammals) are NAD+-dependent enzymes that regulate a large number of cellular pathways and forestall the progression of ageing and age-associated diseases. In recent years, the role of sirtuins in cancer biology has become increasingly apparent, and growing evidence demonstrates that sirtuins regulate many processes that go awry in cancer cells, such as cellular metabolism, the regulation of chromatin structure and the maintenance of genomic stability. In this article, we review recent advances in our understanding of how sirtuins affect cancer metabolism, DNA repair and the tumour microenvironment and how activating or inhibiting sirtuins may be important in preventing or treating cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the role of sirtuins in the regulation of cancer metabolism.
Figure 2: Sirtuins regulate multiple steps of the DNA damage response pathways.

Similar content being viewed by others

References

  1. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000). This study shows that yeast Sir2 and the mouse homologue are NAD+-dependent histone deacetylases that deacetylate histone H3K9, H3K14 and H4K16. This study also shows that Sir2 deacetylase activity is responsible for silencing, suppression of recombination and lifespan extension in vivo.

    Article  CAS  PubMed  Google Scholar 

  2. Guarente, L. Calorie restriction and sirtuins revisited. Genes Dev. 27, 2072–2085 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Guarente, L. Franklin, H. Epstein lecture: sirtuins, aging, and medicine. N. Engl. J. Med. 364, 2235–2244 (2011).

    CAS  PubMed  Google Scholar 

  4. Frye, R. A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793–798 (2000).

    CAS  PubMed  Google Scholar 

  5. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  7. Chalkiadaki, A. & Guarente, L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8, 287–296 (2012).

    CAS  PubMed  Google Scholar 

  8. Chang, H. C. & Guarente, L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab. 25, 138–145 (2014).

    CAS  PubMed  Google Scholar 

  9. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    CAS  PubMed  Google Scholar 

  10. Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Feige, J. N. et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell. Metab. 8, 347–358 (2008).

    CAS  PubMed  Google Scholar 

  13. Bordone, L. et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759–767 (2007).

    CAS  PubMed  Google Scholar 

  14. Herranz, D. et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1, 3 (2010).

    PubMed  Google Scholar 

  15. Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M. & Tschop, M. H. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA 105, 9793–9798 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    CAS  PubMed  Google Scholar 

  17. Vaziri, H. et al. hSIR2 SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001). References 16 and 17 show that, on DNA damage, SIRT1 binds and deacetylates p53, resulting in inhibition of its transcriptional activity and subsequent cellular events: namely, growth arrest and apoptosis.

    CAS  PubMed  Google Scholar 

  18. Cheng, H. L. et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl Acad. Sci. USA 100, 10794–10799 (2003). This paper demonstrates that Sirt1 -knockout mice exhibit developmental defects. After DNA damage, Sirt1 -knockout fibroblasts have hyperacetylated p53 and are resistant to apoptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, C. et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat. Cell Biol. 8, 1025–1031 (2006).

    CAS  PubMed  Google Scholar 

  20. Firestein, R. et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3, e2020 (2008).

    PubMed  PubMed Central  Google Scholar 

  21. Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008). This paper shows that, on DNA damage, SIRT1 is relocalized from gene targets to DNA breaks to promote repair and genomic stability.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, R. H. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14, 312–323 (2008). This article reveals that reduced levels of SIRT1 in Trp53 -heterozygous mice lead to tumorigenesis in many tissues.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, I. C. et al. Role of SIRT1 in regulation of epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis. Mol. Cancer 13, 254 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Wang, R. H. et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol. Cell 32, 11–20 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. Simic, P. et al. SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep. 3, 1175–1186 (2013).

    CAS  PubMed  Google Scholar 

  26. Tiberi, L. et al. A BCL6/BCOR/SIRT1 complex triggers neurogenesis and suppresses medulloblastoma by repressing Sonic Hedgehog signaling. Cancer Cell 26, 797–812 (2014).

    CAS  PubMed  Google Scholar 

  27. Chauhan, D. et al. Preclinical evaluation of a novel SIRT1 modulator SRT1720 in multiple myeloma cells. Br. J. Haematol. 155, 588–598 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lahusen, T. J. & Deng, C. X. SRT1720 induces lysosomal-dependent cell death of breast cancer cells. Mol. Cancer Ther. 14, 183–192 (2015).

    CAS  PubMed  Google Scholar 

  29. Chen, C. W. et al. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat. Med. 21, 335–343 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jang, K. Y. et al. SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas. PLoS ONE 7, e45119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, X. et al. High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci. Rep. 4, 7481 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Menssen, A. et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc. Natl Acad. Sci. USA 109, E187–E196 (2012).

    CAS  PubMed  Google Scholar 

  33. Li, L. et al. SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells. Cell Stem Cell 15, 431–446 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, L. et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21, 266–281 (2012). This paper describes how a combination of SIRT1 inhibition and BCR–ABL inhibition in leukaemia stem cells led to reduced growth and increased apoptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Herranz, D. et al. SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene 32, 4052–4056 (2013).

    CAS  PubMed  Google Scholar 

  36. Boily, G., He, X. H., Pearce, B., Jardine, K. & McBurney, M. W. SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 28, 2882–2893 (2009).

    CAS  PubMed  Google Scholar 

  37. Leko, V., Park, G. J., Lao, U., Simon, J. A. & Bedalov, A. Enterocyte-specific inactivation of SIRT1 reduces tumor load in the APC+/min mouse model. PLoS ONE 8, e66283 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, W. Y. et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123, 437–448 (2005).

    CAS  PubMed  Google Scholar 

  39. Wales, M. M. et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat. Med. 1, 570–577 (1995).

    CAS  PubMed  Google Scholar 

  40. Hamaguchi, M. et al. DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc. Natl Acad. Sci. USA 99, 13647–13652 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, J. E., Chen, J. & Lou, Z. DBC1 is a negative regulator of SIRT1. Nature 451, 583–586 (2008).

    CAS  PubMed  Google Scholar 

  42. Zhao, W. et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451, 587–590 (2008). References 41 and 42 demonstrate that DBC1 inhibits SIRT1 in human cells, leading to increased levels of p53 acetylation and transcriptional activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nemoto, S., Fergusson, M. M. & Finkel, T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306, 2105–2108 (2004).

    CAS  PubMed  Google Scholar 

  44. Chang, T. C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Welch, C., Chen, Y. & Stallings, R. L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017–5022 (2007).

    CAS  PubMed  Google Scholar 

  46. Yamakuchi, M., Ferlito, M. & Lowenstein, C. J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA 105, 13421–13426 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan, H. et al. Activation of stress response gene SIRT1 by BCR–ABL promotes leukemogenesis. Blood 119, 1904–1914 (2012). This study shows that the oncoprotein BCR–ABL activates SIRT1 in haematopoietic stem cells and promotes their survival and proliferation, leading to leukaemia.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Z. et al. SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells. Oncogene 32, 589–598 (2013).

    CAS  PubMed  Google Scholar 

  49. Chu, F., Chou, P. M., Zheng, X., Mirkin, B. L. & Rebbaa, A. Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. Cancer Res. 65, 10183–10187 (2005).

    CAS  PubMed  Google Scholar 

  50. Ota, H. et al. Sirt1 inhibitor, sirtinol, induces senescence-like growth arrest with attenuated Ras–MAPK signaling in human cancer cells. Oncogene 25, 176–185 (2006).

    CAS  PubMed  Google Scholar 

  51. Heltweg, B. et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66, 4368–4377 (2006).

    CAS  PubMed  Google Scholar 

  52. Kim, H. S. et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20, 487–499 (2011). This study shows that SIRT2 regulates the cell cycle and that Sirt2 knockout leads to tumorigenesis in mice by increasing genomic instability.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vaquero, A. et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20, 1256–1261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin, Z. Z. et al. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B overexpression in HCC. BMC Cancer 10, 461 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Nadler, Y. et al. Expression of Aurora A (but not Aurora B) is predictive of survival in breast cancer. Clin. Cancer Res. 14, 4455–4462 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. North, B. J. et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 1438–1453 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Serrano, L. et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 27, 639–653 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kumar, S. & Lombard, D. B. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid. Redox Signal. 22, 1060–1077 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hirschey, M. D. et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121–125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Someya, S. et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802–812 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, H. S. et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 41–52 (2010). This article reports that Sirt3 -knockout cells have increased superoxide levels and are prone to genomic instability and transformation, and that Sirt3 -null mice develop tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Finley, L. W. et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 19, 416–428 (2011). This study shows that SIRT3 functions as a tumour suppressor by reducing ROS production and destabilizing HIF1α.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jeong, S. M. et al. SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1. Oncogene 34, 2115–2124 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Aury-Landas, J. et al. Germline copy number variation of genes involved in chromatin remodelling in families suggestive of Li–Fraumeni syndrome with brain tumours. Eur. J. Hum. Genet. 21, 1369–1376 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Alhazzazi, T. Y. et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 117, 1670–1678 (2011).

    CAS  PubMed  Google Scholar 

  66. Jeong, S. M. et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23, 450–463 (2013). This paper reveals the requirement of the mitochondrial sirtuin SIRT4 for inhibiting glutamine metabolism and ensuring proper DNA repair upon DNA damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jeong, S. M., Lee, A., Lee, J. & Haigis, M. C. SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma. J. Biol. Chem. 289, 4135–4144 (2014).

    CAS  PubMed  Google Scholar 

  68. Garber, M. E. et al. Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl Acad. Sci. USA 98, 13784–13789 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi, Y. L. et al. A genomic analysis of adult T-cell leukemia. Oncogene 26, 1245–1255 (2007).

    CAS  PubMed  Google Scholar 

  70. Wang, Q. et al. Upregulated INHBA expression is associated with poor survival in gastric cancer. Med. Oncol. 29, 77–83 (2012).

    PubMed  Google Scholar 

  71. Blaveri, E. et al. Bladder cancer outcome and subtype classification by gene expression. Clin. Cancer Res. 11, 4044–4055 (2005).

    CAS  PubMed  Google Scholar 

  72. Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126, 941–954 (2006).

    CAS  PubMed  Google Scholar 

  73. Csibi, A. et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840–854 (2013). This study demonstrates the relationship between high levels of mTORC1 signalling, which is a hallmark of cancer, and reduced levels of SIRT4.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lu, W., Zuo, Y., Feng, Y. & Zhang, M. SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol. 35, 10699–10705 (2014).

    CAS  PubMed  Google Scholar 

  75. Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492–496 (2008). This paper demonstrates that SIRT6 is localized at telomeric chromatin and is required for the stable association of WRN and the maintenance of telomeric structures.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kawahara, T. L. et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell 136, 62–74 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Michishita, E. et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8, 2664–2666 (2009).

    CAS  PubMed  Google Scholar 

  78. Kugel, S. & Mostoslavsky, R. Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem. Sci. 39, 72–81 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006). This paper shows that SIRT6 is necessary for genomic stability as it regulates the BER pathway. SIRT6 absence in mice leads to progeria phenotypes and premature death.

    CAS  PubMed  Google Scholar 

  80. Zhong, L. et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1α. Cell 140, 280–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, B., Zwaans, B. M., Eckersdorff, M. & Lombard, D. B. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 8, 2662–2663 (2009).

    CAS  PubMed  Google Scholar 

  82. Sebastian, C. et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151, 1185–1199 (2012). This study reports that SIRT6 functions as a tumour suppressor by regulating aerobic glycolysis and glutamine metabolism in cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Min, L. et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat. Cell Biol. 14, 1203–1211 (2012).

    CAS  PubMed  Google Scholar 

  84. Marquardt, J. U. et al. Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients. Hepatology 58, 1054–1064 (2013).

    CAS  PubMed  Google Scholar 

  85. Khongkow, M. et al. SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis 34, 1476–1486 (2013).

    CAS  PubMed  Google Scholar 

  86. Bauer, I. et al. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. J. Biol. Chem. 287, 40924–40937 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, S. et al. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell 52, 303–313 (2013).

    CAS  PubMed  Google Scholar 

  88. Grob, A. et al. Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J. Cell Sci. 122, 489–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Barber, M. F. et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487, 114–118 (2012). This report shows that SIRT7 regulates H3K18 acetylation at gene promoters, represses transcription and promotes oncogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  91. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zwaans, B. M. & Lombard, D. B. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Dis. Model. Mech. 7, 1023–1032 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Qiu, X., Brown, K., Hirschey, M. D., Verdin, E. & Chen, D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell. Metab. 12, 662–667 (2010).

    CAS  PubMed  Google Scholar 

  95. Tao, R. et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40, 893–904 (2011).

    Google Scholar 

  96. Bell, E. L., Emerling, B. M., Ricoult, S. J. & Guarente, L. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30, 2986–2996 (2011). This study demonstrates that SIRT3 functions as a tumour suppressor by reducing ROS production and destabilizing HIF1α.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Richardson, D. R., Kalinowski, D. S., Lau, S., Jansson, P. J. & Lovejoy, D. B. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim. Biophys. Acta 1790, 702–717 (2009).

    CAS  PubMed  Google Scholar 

  98. Yang, H. et al. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J. 34, 1110–1125 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fan, J. et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 53, 534–548 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ozden, O. et al. SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic. Biol. Med. 76, 163–172 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Eilers, M. & Eisenman, R. N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mao, B. et al. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int. J. Biochem. Cell Biol. 43, 1573–1581 (2011).

    CAS  PubMed  Google Scholar 

  104. Marshall, G. M. et al. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet. 7, e1002135 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yuan, J., Minter-Dykhouse, K. & Lou, Z. A. c-Myc–SIRT1 feedback loop regulates cell growth and transformation. J. Cell Biol. 185, 203–211 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, P. Y. et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ. 20, 503–514 (2013).

    CAS  PubMed  Google Scholar 

  107. Lin, Z. et al. USP10 antagonizes c-Myc transcriptional activation through SIRT6 stabilization to suppress tumor formation. Cell Rep. 5, 1639–1649 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Jochemsen, A. G. & Shiloh, Y. USP10: friend and foe. Cell 140, 308–310 (2010).

    CAS  PubMed  Google Scholar 

  109. Shin, J. et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 5, 654–665 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001).

    CAS  PubMed  Google Scholar 

  112. Xu, Z. et al. SIRT6 rescues the age related decline in base excision repair in a PARP1-dependent manner. Cell Cycle 14, 269–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Fan, W. & Luo, J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell 39, 247–258 (2010).

    CAS  PubMed  Google Scholar 

  114. Ming, M. et al. Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc. Natl Acad. Sci. USA 107, 22623–22628 (2010). References 113 and 114 show that SIRT1 plays an important part in the NER pathway by activating the XPA and XPC repair factors, through deacetylation and induced gene expression, respectively.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Fang, E. F. et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157, 882–896 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Scheibye-Knudsen, M. et al. A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in Cockayne syndrome. Cell. Metab. 20, 840–855 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, R. H. et al. SIRT1 deacetylates TopBP1 and modulates intra-S-phase checkpoint and DNA replication origin firing. Int. J. Biol. Sci. 10, 1193–1202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Chapman, J. R., Taylor, M. R. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).

    CAS  PubMed  Google Scholar 

  119. Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. San Filippo, J., Sung, P. & Klein, H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257 (2008).

    CAS  PubMed  Google Scholar 

  121. Palacios, J. A. et al. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J. Cell Biol. 191, 1299–1313 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Yuan, Z., Zhang, X., Sengupta, N., Lane, W. S. & Seto, E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol. Cell 27, 149–162 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, K. et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J. Biol. Chem. 283, 7590–7598 (2008).

    CAS  PubMed  Google Scholar 

  124. Toiber, D. et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell 51, 454–468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mao, Z. et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443–1446 (2011). This article demonstrates that SIRT6 is recruited after oxidative stress to the sites of DNA DSBs and stimulates DNA repair by mono-ADP-ribosylating PARP1 and stimulating its poly-ADP-ribosylase activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kaidi, A., Weinert, B. T., Choudhary, C. & Jackson, S. P. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329, 1348–1353 (2010). This study shows that SIRT6 plays an important part in enhancing DSB repair by deacetylating CtIP and promoting DNA resection.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004).

    CAS  PubMed  Google Scholar 

  128. Jeong, J. et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp. Mol. Med. 39, 8–13 (2007).

    CAS  PubMed  Google Scholar 

  129. McCord, R. A. et al. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging 1, 109–121 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dioum, E. M. et al. Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science 324, 1289–1293 (2009).

    CAS  PubMed  Google Scholar 

  131. Lim, J. H. et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol. Cell 38, 864–878 (2010).

    CAS  PubMed  Google Scholar 

  132. Laemmle, A. et al. Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1α protein under hypoxic conditions. PLoS ONE 7, e33433 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473, 234–238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Xie, M., Liu, M. & He, C. S. SIRT1 regulates endothelial Notch signaling in lung cancer. PLoS ONE 7, e45331 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hubbi, M. E., Hu, H., Kshitiz, Gilkes, D. M. & Semenza, G. L. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J. Biol. Chem. 288, 20768–20775 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Suzuki, K. et al. SRT1720, a SIRT1 activator, promotes tumor cell migration, and lung metastasis of breast cancer in mice. Oncol. Rep. 27, 1726–1732 (2012).

    CAS  PubMed  Google Scholar 

  137. Byles, V. et al. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene 31, 4619–4629 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Malik, S. et al. SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. Sci. Rep. 5, 9841 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Van Gool, F. et al. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat. Med. 15, 206–210 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Jiang, H. et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110–113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Xiao, C. et al. Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice. J. Biol. Chem. 287, 41903–41913 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kojima, K. et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem. Biophys. Res. Commun. 373, 423–428 (2008).

    CAS  PubMed  Google Scholar 

  144. Wang, J. et al. Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells. Int. J. Oncol. 41, 1101–1109 (2012).

    CAS  PubMed  Google Scholar 

  145. Lain, S. et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13, 454–463 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. He, X. et al. SIRT2 activity is required for the survival of C6 glioma cells. Biochem. Biophys. Res. Commun. 417, 468–472 (2012).

    CAS  PubMed  Google Scholar 

  147. Hoffmann, G., Breitenbucher, F., Schuler, M. & Ehrenhofer-Murray, A. E. A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J. Biol. Chem. 289, 5208–5216 (2014).

    CAS  PubMed  Google Scholar 

  148. Banerjee, S., Kaye, S. B. & Ashworth, A. Making the best of PARP inhibitors in ovarian cancer. Nat. Rev. Clin. Oncol. 7, 508–519 (2010).

    CAS  PubMed  Google Scholar 

  149. Gottlieb, S. & Esposito, R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56, 771–776 (1989).

    CAS  PubMed  Google Scholar 

  150. Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11, 255–269 (1997).

    CAS  PubMed  Google Scholar 

  151. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021–1026 (2000).

    CAS  PubMed  Google Scholar 

  152. Braunstein, M., Sobel, R. E., Allis, C. D., Turner, B. M. & Broach, J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16, 4349–4356 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kennedy, B. K., Austriaco, N. R. Jr., Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80, 485–496 (1995).

    CAS  PubMed  Google Scholar 

  154. Kennedy, B. K. et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89, 381–391 (1997).

    CAS  PubMed  Google Scholar 

  155. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles — a cause of aging in yeast. Cell 91, 1033–1042 (1997).

    CAS  PubMed  Google Scholar 

  156. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225–238 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. & Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11, 437–444 (2003).

    CAS  PubMed  Google Scholar 

  159. Li, W. et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating α-tubulin. J. Neurosci. 27, 2606–2616 (2007).

    PubMed  PubMed Central  Google Scholar 

  160. Jing, E., Gesta, S. & Kahn, C. R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell. Metab. 6, 105–114 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, Y. P. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 33, 1304–1320 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Xu, Y. et al. Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase. Cancer Res. 74, 3630–3642 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Bell, E. L. & Guarente, L. The SirT3 divining rod points to oxidative stress. Mol. Cell 42, 561–568 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Hallows, W. C. et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 41, 139–149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Lombard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807–8814 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Laurent, G. et al. SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation. Mol. Cell. Biol. 33, 4552–4561 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Laurent, G. et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686–698 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Mathias, R. A. et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 159, 1615–1625 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Peng, C. et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 10, M111.012658 (2011).

    PubMed  PubMed Central  Google Scholar 

  170. Park, J. et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50, 919–930 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Rardin, M. J. et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell. Metab. 18, 920–933 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Tan, M. et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell. Metab. 19, 605–617 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Nishida, Y. et al. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell 59, 321–332 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012).

    CAS  PubMed  Google Scholar 

  175. Ryu, D. et al. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell. Metab. 20, 856–869 (2014).

    CAS  PubMed  Google Scholar 

  176. Yoshizawa, T. et al. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin–proteasome pathway. Cell. Metab. 19, 712–721 (2014).

    CAS  PubMed  Google Scholar 

  177. Vakhrusheva, O. et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102, 703–710 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. Williams for comments on the manuscript. They apologize to colleagues whose original work could not be cited owing to space limitations. L.G. is supported by the US National Institutes of Health and the Glenn Foundation for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Guarente.

Ethics declarations

Competing interests

L.G. consults for GlaxoSmithKline, Chronos Therapeutics and Segterra, and he is a founder of Elysium Health. A.C. declares no competing interests.

Related links

PowerPoint slides

Glossary

Glycolysis

The conversion of glucose into pyruvate in a series of enzymatic steps, with the concurrent generation of ATP.

Glutaminolysis

A series of enzymatic reactions in which the amino acid glutamine is converted into glutamate, which can be further metabolized to α-ketoglutarate.

Calorie restriction

A dietary regimen in which all essential nutrients are supplied but calories are reduced by 20–40% compared to ad libitum feeding.

Oxidative metabolism

The oxidation of carbohydrates to CO2 in mitochondria to maximize the production of ATP.

Thymocytes

Haematopoietic progenitor cells that reside in the thymus and differentiate into mature T lymphocytes.

Enterocyte

A type of epithelial cell that resides in the intestine and absorbs nutrients.

Pentose phosphate shunt

An anabolic pathway that converts glucose into pentoses (five-carbon sugars used in nucleotide synthesis), with the concurrent generation of NADPH.

E boxes

DNA sequences found in promoters and recognized by transcription factors that contain the basic helix–loop–helix motif.

Pyrimidine dimers

Covalent linkages of thymine or cytosine bases in DNA that are induced by ultraviolet light.

Interstrand crosslinks

Covalent linkages of complementary strands of DNA that are induced by various exogenous agents (for example, cisplatin) or endogenous agents (for example, aldehydes).

Telomeres

Repetitive nucleotide sequences at the ends of chromosomes that protect them from degradation and fusion with neighbouring chromosomes.

Centromeres

Regions of chromosomes at which two sister chromatids attach to the mitotic spindle for proper segregation during mitosis.

γH2AX

The phosphorylated form of the histone variant H2AX, which marks double-stranded DNA breaks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalkiadaki, A., Guarente, L. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 15, 608–624 (2015). https://doi.org/10.1038/nrc3985

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3985

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer