Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cancer: pathological nuclear reprogramming?

Abstract

The ability of stem cells to self-renew and generate different lineages during development and organogenesis is a fundamental, tightly controlled, and generally unidirectional process, whereas the 'immortality' of cancer cells could be regarded as pathological self-renewal. The molecular mechanisms that underpin the generation of induced pluripotent stem cells are remarkably similar to those that are deregulated in cancer — so much so that aberrant reprogramming is tumorigenic. The similarities also suggest that mutations in genes implicated in DNA methylation dynamics might represent a hallmark of cancers with a stem cell origin, and they highlight an alternative view of cancer that may be of clinical benefit.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reprogramming and metastasis in solid tumours.
Figure 2: The epigenetic relationship between reprogramming and cancer.

Similar content being viewed by others

References

  1. Gurdon, J. B., Elsdale, T. R. & Fischberg, M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64–65 (1958).

    CAS  Google Scholar 

  2. Wabl, M. R., Brun, R. B. & Du Pasquier, L. Lymphocytes of the toad Xenopus laevis have the gene set for promoting tadpole development. Science 190, 1310–1312 (1975).

    Article  CAS  Google Scholar 

  3. Tada, M., Tada, T., Lefebvre, L., Barton, S. C. & Surani, M. A. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520 (1997).

    Article  CAS  Google Scholar 

  4. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  5. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159 (2008).

    Article  CAS  Google Scholar 

  6. Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  Google Scholar 

  7. Fadloun, A., Eid, A. & Torres-Padilla, M. E. Mechanisms and dynamics of heterochromatin formation during mammalian development: closed paths and open questions. Curr. Top. Dev. Biol. 104, 1–45 (2013).

    Article  CAS  Google Scholar 

  8. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome - biological and translational implications. Nature Rev. Cancer 11, 726–734 (2011).

    Article  CAS  Google Scholar 

  9. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  CAS  Google Scholar 

  10. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  Google Scholar 

  11. Blaschke, K. et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500, 222–226 (2013).

    Article  CAS  Google Scholar 

  12. Yin, R. et al. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J. Am. Chem. Soc. 135, 10396–10403 (2013).

    Article  CAS  Google Scholar 

  13. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  Google Scholar 

  14. Doege, C. A. et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652–655 (2012).

    Article  CAS  Google Scholar 

  15. Gao, Y. et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12, 453–469 (2013).

    Article  CAS  Google Scholar 

  16. Hu, X. et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 14, 512–522 (2014).

    Article  CAS  Google Scholar 

  17. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  18. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    Article  CAS  Google Scholar 

  19. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotech. 26, 101–106 (2008).

    Article  CAS  Google Scholar 

  20. Wernig, M., Meissner, A., Cassady, J. P. & Jaenisch, R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2, 10–12 (2008).

    Article  CAS  Google Scholar 

  21. Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. Cell. Metab. 16, 9–17 (2012).

    Article  CAS  Google Scholar 

  22. Gut, P. & Verdin, E. The nexus of chromatin regulation and intermediary metabolism. Nature 502, 489–498 (2013).

    Article  CAS  Google Scholar 

  23. Hydbring, P. & Larsson, L. G. Tipping the balance: Cdk2 enables Myc to suppress senescence. Cancer Res. 70, 6687–6691 (2010).

    Article  CAS  Google Scholar 

  24. Yi, L., Lu, C., Hu, W., Sun, Y. & Levine, A. J. Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res. 72, 5635–5645 (2012).

    Article  CAS  Google Scholar 

  25. Salama, R., Sadaie, M., Hoare, M. & Narita, M. Cellular senescence and its effector programs. Genes Dev. 28, 99–114 (2014).

    Article  CAS  Google Scholar 

  26. Li, Y. et al. The p53-PUMA axis suppresses iPSC generation. Nature Commun. 4, 2174 (2013).

    Article  Google Scholar 

  27. Banito, A. et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 23, 2134–2139 (2009).

    Article  CAS  Google Scholar 

  28. Li, H. et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136–1139 (2009).

    Article  CAS  Google Scholar 

  29. Ding, X. et al. The Polycomb protein EZH2 impacts on induced pluripotent stem cell generation. Stem Cells Dev. 23, 931–940 (2014).

    Article  CAS  Google Scholar 

  30. Golipour, A. et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11, 769–782 (2012).

    Article  CAS  Google Scholar 

  31. David, L. & Polo, J. M. Phases of reprogramming. Stem Cell Res. 12, 754–761 (2014).

    Article  Google Scholar 

  32. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010).

    Article  CAS  Google Scholar 

  33. Li, R. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010).

    Article  CAS  Google Scholar 

  34. Polo, J. M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012).

    Article  CAS  Google Scholar 

  35. Liu, X. et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nature Cell Biol. 15, 829–838 (2013).

    Article  CAS  Google Scholar 

  36. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biol. 10, 593–601 (2008).

    Article  CAS  Google Scholar 

  37. Abad, M. et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502, 340–345 (2013).

    Article  CAS  Google Scholar 

  38. Ohnishi, K. et al. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156, 663–677 (2014).

    Article  CAS  Google Scholar 

  39. Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).

    Article  CAS  Google Scholar 

  40. Yan, X. J. et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nature Genet. 43, 309–315 (2011).

    Article  CAS  Google Scholar 

  41. Lorsbach, R. B. et al. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17, 637–641 (2003).

    Article  CAS  Google Scholar 

  42. Ono, R. et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 62, 4075–4080 (2002).

    CAS  PubMed  Google Scholar 

  43. Langemeijer, S. M. et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nature Genet. 41, 838–842 (2009).

    Article  CAS  Google Scholar 

  44. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  Google Scholar 

  45. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  Google Scholar 

  46. Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    Article  CAS  Google Scholar 

  47. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  Google Scholar 

  48. Gaidzik, V. I. et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J. Clin. Oncol. 30, 1350–1357 (2012).

    Article  CAS  Google Scholar 

  49. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  Google Scholar 

  50. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).

    Article  CAS  Google Scholar 

  51. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    Article  CAS  Google Scholar 

  52. Lu, C. et al. Induction of sarcomas by mutant IDH2. Genes Dev. 27, 1986–1998 (2013).

    Article  CAS  Google Scholar 

  53. Yang, H. et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32, 663–669 (2013).

    Article  CAS  Google Scholar 

  54. Kudo, Y. et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci. 103, 670–676 (2012).

    Article  CAS  Google Scholar 

  55. Muller, T. et al. Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am. J. Pathol. 181, 675–683 (2012).

    Article  Google Scholar 

  56. Lian, C. G. et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150, 1135–1146 (2012).

    Article  CAS  Google Scholar 

  57. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Rev. Cancer 8, 755–768 (2008).

    Article  CAS  Google Scholar 

  58. Hoek, K. & Goding, C. R. Cancer stem cells versus phenotype switching in melanoma. Pigment Cell Melamoma Res. 23, 746–759 (2010).

    Article  CAS  Google Scholar 

  59. Chaffer, C. L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. USA 108, 7950–7955 (2011).

    Article  CAS  Google Scholar 

  60. Cheli, Y. et al. Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene 30, 2307–2318 (2011).

    Article  CAS  Google Scholar 

  61. Hikichi, T. et al. Transcription factors interfering with dedifferentiation induce cell type-specific transcriptional profiles. Proc. Natl Acad. Sci. USA 110, 6412–6417 (2013).

    Article  CAS  Google Scholar 

  62. Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654 (2013).

    Article  CAS  Google Scholar 

  63. Li, Y. et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 21, 196–204 (2011).

    Article  CAS  Google Scholar 

  64. Blair, K. et al. Culture parameters for stable expansion, genetic modification and germline transmission of rat pluripotent stem cells. Biol. Open 1, 58–65 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.R.G. and X.L. would like to acknowledge support from the Ludwig Institute for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Colin R. Goding or Xin Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goding, C., Pei, D. & Lu, X. Cancer: pathological nuclear reprogramming?. Nat Rev Cancer 14, 568–573 (2014). https://doi.org/10.1038/nrc3781

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3781

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer