Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging hallmarks of cancer in living mice

Key Points

  • Our current view on cancer hallmarks is mostly based on techniques that provide a snapshot of a large population of cells, whereas intravital microscopy (IVM) provides a view on dynamic subpopulations of both tumour and stromal cells in living animals.

  • Imaging windows allow longitudinal studies on optically inaccessible tumour tissue during consecutive imaging sessions. Most imaging windows are used to study primary tumours, but some allow for the examination of metastases.

  • To acquire high-quality fluorescent images deep inside animals, multiphoton microscopes are frequently used. The advantages of multiphoton microscopes include deep tissue penetration, reduced phototoxicity and reduced bleaching, optical sectioning and reduced tissue-mediated absorption and scattering.

  • Several contrast agents and fluorescent biosensors are available to intravitally image the activation status of multiple proteins and signalling pathways in individual cells, deep inside animals.

  • IVM demonstrated a paradoxical role of the tumour vasculature by showing that, in some cases, leaky vessels can prevent the delivery of therapeutic agents owing to elevated interstitial fluid pressure but, in other cases, leaky vessels can support the delivery of drugs.

  • Intravital imaging is a powerful tool to investigate the paradoxical role of the immune system on tumour growth and could help to clarify the best approach to stimulate the immune destruction of tumours and prevent pro-tumorigenic immune effects.

  • Intravital lineage tracing can uncover the dynamic nature of cancer stem cells and provides information on the history and fate of these cells.

  • IVM has the potential to identify the targets of cancer therapeutics and validate the in vivo mode of actions of these drugs, for example, those that inhibit proliferation or promote cell death.

  • Combining fluorescence IVM techniques with various imaging and conventional biochemical techniques holds great promise to gain further insight into the molecular mechanisms that underlie the hallmarks of cancer.

Abstract

To comprehend the complexity of cancer, the biological characteristics acquired during the initiation and progression of tumours were classified as the 'hallmarks of cancer'. Intravital microscopy techniques have been developed to study individual cells that acquire these crucial traits, by visualizing tissues with cellular or subcellular resolution in living animals. In this Review, we highlight the latest intravital microscopy techniques that have been used in living animals (predominantly mice) to unravel fundamental and dynamic aspects of various hallmarks of cancer. In addition, we discuss the application of intravital microscopy techniques to cancer therapy, as well as limitations and future perspectives for these techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intravital microscopy to study tumour migration and metastasis.
Figure 2: Visualizing intratumoural heterogeneity of blood flow.
Figure 3: Intravital lineage tracing using the Confetti construct to study cancer stem cell plasticity.

Similar content being viewed by others

References

  1. Progatzky, F., Dallman, M. J. & Lo Celso, C. From seeing to believing: labelling strategies for in vivo cell-tracking experiments. Interface Focus 3, 20130001 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Condeelis, J. & Weissleder, R. In vivo imaging in cancer. Cold Spring Harb. Perspect Biol. 2, a003848 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  4. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011). References 3 and 4 are two excellent reviews that categorize the characteristics of cancer cells into the hallmarks of cancer to comprehend the complexity of this multifaceted disease.

    Article  CAS  PubMed  Google Scholar 

  5. Christofori, G. New signals from the invasive front. Nature 441, 444–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Tanjore, H. & Kalluri, R. The role of type IV collagen and basement membranes in cancer progression and metastasis. Am. J. Pathol. 168, 715–717 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Condeelis, J. & Segall, J. E. Intravital imaging of cell movement in tumours. Nature Rev. Cancer 3, 921–930 (2003).

    Article  CAS  Google Scholar 

  9. Pinner, S. & Sahai, E. Imaging amoeboid cancer cell motility in vivo. J. Microsc. 231, 441–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Tozluoğlu, M. et al. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nature Cell Biol. 15, 751–762 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Patsialou, A. et al. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. Intravital 2, e25294 (2013).

    Article  PubMed  Google Scholar 

  12. Friedl, P., Locker, J., Sahai, E. & Segall, J. E. Classifying collective cancer cell invasion. Nature Cell Biol. 14, 777–783 (2012). This is an excellent review, which describes the different modes of migration of tumour cells that were identified using IVM.

    Article  CAS  PubMed  Google Scholar 

  13. Roussos, E. T., Condeelis, J. S. & Patsialou, A. Chemotaxis in cancer. Nature Rev. Cancer 11, 573–587 (2011).

    Article  CAS  Google Scholar 

  14. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biol. 9, 1392–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Giampieri, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biol. 11, 1287–1296 (2009). In this paper, a fluorescent TGF β biosensor was used in an IVM study to demonstrate that the TGF β signalling pathway can function as a molecular switch to change from cohesive to single cell motility.

    Article  CAS  PubMed  Google Scholar 

  16. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007). The studies in references 16 and 17 showed a paracrine loop between tumour cells and macrophages that drives tumour cell migration and intravasation.

    Article  CAS  PubMed  Google Scholar 

  18. Boimel, P. J. et al. Contribution of CXCL12 secretion to invasion of breast cancer cells. Breast Cancer Res. 14, R23 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patsialou, A. et al. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 69, 9498–9506 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pinner, S. et al. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res. 69, 7969–7977 (2009). This IVM study revealed a correlation between undifferentiated state, poor pigmentation and migratory capacity, which can be reverted upon arrival at secondary sites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16, 1515–1523 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Philippar, U. et al. A mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev. Cell 15, 813–828 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roussos, E. T. et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J. Cell Sci. 124, 2120–2131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Canel, M. et al. Quantitative in vivo imaging of the effects of inhibiting integrin signaling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics. Cancer Res. 70, 9413–9422 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Serrels, A. et al. Real-time study of E-cadherin and membrane dynamics in living animals: implications for disease modeling and drug development. Cancer Res. 69, 2714–2719 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. McGhee, E. J. et al. FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion. Small GTPases 2, 239–244 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Timpson, P. et al. Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53. Cancer Res. 71, 747–757 (2011). In this IVM study, the use of a RHO–FRET probe demonstrated that RHOA activity was present at both the front and rear of migratory cells, in contrast to previous in vitro findings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gurskaya, N. G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nature Biotech. 24, 461–465 (2006).

    Article  CAS  Google Scholar 

  29. Subach, O. M. et al. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nature Methods 8, 771–777 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl Acad. Sci. 99, 12651–12656 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gligorijevic, B., Kedrin, D., Segall, J. E., Condeelis, J. & van Rheenen, J. Dendra2 photoswitching through the mammary imaging window. J. Vis. Exp. 5, 1278 (2009).

    Google Scholar 

  32. Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nature Methods 5, 1019–1021 (2008). This paper describes the use of photoswitchable proteins in multiple imaging sessions using a mammary imaging window and revealed extensive intratumoural migration that is undetectable in static histological images.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gligorijevic, B. et al. N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J. Cell Sci. 125, 724–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amornphimoltham, P. et al. Rab25 regulates invasion and metastasis in head and neck cancer. Clin. Cancer Res. 19, 1375–1388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ritsma, L. et al. Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Sci. Transl. Med. 4, 158ra145 (2012). This study describes the formation of liver metastasis, imaged through an abdominal imaging window, which showed that migration is required not only for tumour cells to reach a secondary site but also for maturation of micrometastases.

    Article  CAS  PubMed  Google Scholar 

  36. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature Med. 16, 116–122 (2010). In this study, the establishment of brain metastases was extensively imaged in vivo and, surprisingly, dormant cells were shown not to be sessile but instead to migrate along blood vessels.

    Article  CAS  PubMed  Google Scholar 

  38. Lecoq, J. et al. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nature Med. 17, 893–898 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177–182 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Kodack, D. P. et al. Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proc. Natl Acad. Sci. USA 109, E3119–3127 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Manning, C. S. et al. Intravital imaging reveals conversion between distinct tumor vascular morphologies and localized vascular response to Sunitinib. Intravital 2, e24790 (2013).

    Article  Google Scholar 

  42. Motoike, T. et al. Universal GFP reporter for the study of vascular development. Genesis 28, 75–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Fang, M., Peng, C. W., Pang, D. W. & Li, Y. Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol. Med. 9, 151–163 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kamoun, W. S. et al. Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nature Meth. 7, 655–660 (2010). This study describes methodologies for simultaneous measurements of different parameters in the vascular network, based on multiphoton laser scanning microscopy and labelled red blood cells.

    Article  CAS  Google Scholar 

  45. Nakasone, E. S. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488–503 (2012). This study showed that chemotherapy affects the microenvironment, which influences the therapy response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fukumura, D., Duda, D. G., Munn, L. L. & Jain, R. K. Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17, 206–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D. M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 163, 1801–1815 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chang, Y. S. et al. Mosaic blood vessels in tumors: Frequency of cancer cells in contact with flowing blood. Proc. Natl Acad. Sci. USA 97, 14608–14613 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jain, R. K. Molecular regulation of vessel maturation. Nature Med. 9, 685–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nature Rev. Cancer 6, 583–592 (2006).

    Article  CAS  Google Scholar 

  52. Sounni, N. E. et al. Stromal regulation of vessel stability by MMP14 and TGFβ. Dis. Model. Mech. 3, 317–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bockhorn, M., Jain, R. K. & Munn, L. L. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol. 8, 444–448 (2007). This is a good review of the evidence for both active intravasation of tumours cells into the circulation as well as passive intravasation without the involvement of active cell migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nature Rev. Cancer 6, 24–37 (2006).

    Article  CAS  Google Scholar 

  55. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nature Rev. Cancer 9, 239–252 (2009). This is a review on the role of non-malignant cells in the microenvironment during metastasis.

    Article  CAS  Google Scholar 

  56. Egeblad, M. et al. Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Dis. Model. Mech. 1, 155–167 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lohela, M. & Werb, Z. Intravital imaging of stromal cell dynamics in tumors. Curr. Opin. Genet. Dev. 20, 72–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Boissonnas, A., Fetler, L., Zeelenberg, I. S., Hugues, S. & Amigorena, S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med. 204, 345–356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Breart, B., Lemaitre, F., Celli, S. & Bousso, P. Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J. Clin. Invest. 118, 1390–1397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mempel, T. R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Deguine, J., Breart, B., Lemaître, F., Di Santo, J. P. & Bousso, P. Intravital imaging reveals distinct dynamics for natural killer and CD8+ T cells during tumor regression. Immunity 33, 632–644 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Ritsma, L., Vrisekoop, N. & van Rheenen, J. In vivo imaging and histochemistry are combined in the cryosection labelling and intravital microscopy technique. Nature Commun. 4, 2366 (2013).

    Article  Google Scholar 

  63. DeNardo, D. G. et al. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jacquelin, S. et al. CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice. Blood 122, 674–683 (2013).

    Article  PubMed  Google Scholar 

  65. Boissonnas, A. et al. CD8+ tumor-infiltrating T cells are trapped in the tumor-dendritic cell network. Neoplasia 15, 85–94 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Engelhardt, John, J. et al. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21, 402–417 (2012). References 60 and 66 concern IVM studies that show the potential tumour-supporting and therapy-impairing role of the immune system by occupying T cells, thereby preventing tumour cell destruction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shenghui, H., Nakada, D. & Morrison, S. J. Mechanisms of stem cell self-renewal. Annu. Rev. Cell Dev. Biol. 25, 377–406 (2009).

    Article  CAS  Google Scholar 

  68. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Mazo, I. B. et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J. Exp. Med. 188, 465–474 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee, J. et al. Implantable microenvironments to attract hematopoietic stem/cancer cells. Proc. Natl Acad. Sci. USA 109, 19638–19643 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lo Celso, C., Lin, C. P. & Scadden, D. T. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nature Protoc. 6, 1–14 (2011).

    Article  CAS  Google Scholar 

  72. Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Lassailly, F., Foster, K., Lopez-Onieva, L., Currie, E. & Bonnet, D. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood 122, 1730–1740 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Rompolas, P. et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496–499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ritsma, L. et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Driessens, G., Beck, B., Caauwe, A., Simons, B. D. & Blanpain, C. Defining the mode of tumour growth by clonal analysis. Nature 488, 527–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Zomer, A. et al. Intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cells 31, 602–606 (2012). References 78 to 81 reveal the existence of cancer stem cells in unperturbed tumours in different cancer models.

    Article  CAS  PubMed Central  Google Scholar 

  82. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. & Sanes, J. R. Improved tools for the Brainbow toolbox. Nature Meth. 10, 540–547 (2013).

    Article  CAS  Google Scholar 

  84. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  85. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nature Rev. Cancer 11, 85–95 (2011).

    Article  CAS  Google Scholar 

  86. Schulze, A. & Harris, A. L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 491, 364–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Skala, M. C. et al. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J. Biomed. Opt. 12, 024014 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Walsh, A. J. et al. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res. 73, 6164–6174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zipfel, W. R. et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA 100, 7075–7080 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol. Annu. Rev. 11, 227–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Conklin, M. W., Provenzano, P. P., Eliceiri, K. W., Sullivan, R. & Keely, P. J. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem. Biophys. 53, 145–157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Galletly, N. P. et al. Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Br. J. Dermatol. 159, 152–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Provenzano, P. P. et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4, 38 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Marzo, I. & Naval, J. Antimitotic drugs in cancer chemotherapy: promises and pitfalls. Biochem. Pharmacol. 86, 703–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Orth, J. D. et al. Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer Res. 71, 4608–4616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Janssen, A., Beerling, E., Medema, R. & van Rheenen, J. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy. PLoS ONE 8, e64029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol. 20, 54–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Rueckel, M., Mack-Bucher, J. A. & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl Acad. Sci. USA 103, 17137–17142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vinegoni, C., Lee, S., Gorbatov, R. & Weissleder, R. Motion compensation using a suctioning stabilizer for intravital microscopy. Intravital 1, 115–121 (2012).

    Article  PubMed  Google Scholar 

  100. Soulet, D., Pare, A., Coste, J. & Lacroix, S. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy. PLoS ONE 8, e53942 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fatakdawala, H. et al. Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques. Biomed. Opt. Express 4, 1724–1741 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kilarski, W. W. et al. Intravital immunofluorescence for visualizing the microcirculatory and immune microenvironments in the mouse ear dermis. PLoS ONE 8, e57135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sinha, D. K. et al. Photocontrol of protein activity in cultured cells and zebrafish with one- and two-photon illumination. Chembiochem 11, 653–663 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Lu, X. et al. Optochemogenetics (OCG) allows more precise control of genetic engineering in mice with CreER regulators. Bioconjug. Chem. 23, 1945–1951 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sando Iii, R. et al. Inducible control of gene expression with destabilized Cre. Nature Meth. 10, 1085–1088 (2013).

    Article  CAS  Google Scholar 

  107. Keese, M., Yagublu, V., Schwenke, K., Post, S. & Bastiaens, P. Fluorescence lifetime imaging microscopy of chemotherapy-induced apoptosis resistance in a syngenic mouse tumor model. Int. J. Cancer 126, 104–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Nobis, M. et al. Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of Src in pancreatic cancer. Cancer Res. 73, 4674–4686 (2013). This study demonstrates the value of using IVM and FRET–FLIM to investigate drug targeting efficiency in a very specific manner.

    Article  CAS  PubMed  Google Scholar 

  109. Grant, D. M. et al. Multiplexed FRET to image multiple signaling events in live cells. Biophys. J. 95, L69–L71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamaguchi, Y. et al. Live imaging of apoptosis in a novel transgenic mouse highlights its role in neural tube closure. J. Cell Biol. 195, 1047–1060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kamioka, Y. et al. Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors. Cell Struct. Funct. 37, 65–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Johnsson, A., Karin, E. et al. The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues. Cell Rep. 6, 1153–1164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huijbers, I. J., Krimpenfort, P., Berns, A. & Jonkers, J. Rapid validation of cancer genes in chimeras derived from established genetically engineered mouse models. Bioessays 33, 701–710 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Politi, K. & Pao, W. How genetically engineered mouse tumor models provide insights into human cancers. J. Clin. Oncol. 29, 2273–2281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cheon, D. J. & Orsulic, S. Mouse models of cancer. Annu. Rev. Pathol. 6, 95–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Stoletov, K. et al. Role of connexins in metastatic breast cancer and melanoma brain colonization. J. Cell Sci. 126, 904–913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vogelstein, B. & Kinzler, K. W. Cancer genes and the pathways they control. Nature Med. 10, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pierce, A. J., Johnson, R. D., Thompson, L. H. & Jasin, M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13, 2633–2638 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Certo, M. T. et al. Tracking genome engineering outcome at individual DNA breakpoints. Nature Methods 8, 671–676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Giedt, R. J., Koch, P. D. & Weissleder, R. Single cell analysis of drug distribution by intravital imaging. PLoS ONE 8, e60988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Earley, S. et al. In vivo imaging of drug-induced mitochondrial outer membrane permeabilization at single-cell resolution. Cancer Res. 72, 2949–2956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thurber, G. M. et al. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nature Commun. 4, 1504 (2013). This study describes how IVM can be used to validate drug action in vivo at single cell and subcellular levels.

    Article  CAS  Google Scholar 

  124. Dennis, M. S. et al. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res. 67, 254–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Looney, M. R. et al. Stabilized imaging of immune surveillance in the mouse lung. Nature Meth. 8, 91–96 (2011).

    Article  CAS  Google Scholar 

  126. Ritsma, L. et al. Surgical implantation of an abdominal imaging window for intravital microscopy. Nature Protoc. 8, 583–594 (2013).

    Article  CAS  Google Scholar 

  127. Hsiung, P. L. et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature Med. 14, 454–458 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Thurber, G. M., Figueiredo, J. L. & Weissleder, R. Multicolor fluorescent intravital live microscopy (FILM) for surgical tumor resection in a mouse xenograft model. PLoS ONE 4, e8053 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, T. D., Mandella, M. J., Contag, C. H. & Kino, G. S. Dual-axis confocal microscope for high-resolution in vivo imaging. Opt. Lett. 28, 414–416 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Dunn, K. W. & Young, P. A. Principles of multiphoton microscopy. Nephron Exp. Nephrol. 103, e33–e40 (2006).

    Article  PubMed  Google Scholar 

  131. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Meth. 2, 932–940 (2005).

    Article  CAS  Google Scholar 

  132. Campagnola, P. J. et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82, 493–508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Friedl, P., Wolf, K., von Andrian, U. H. & Harms, G. Biological second and third harmonic generation microscopy. Curr. Protoc. Cell Biol. 34, 1–4 (2007).

    Google Scholar 

  134. Vakoc, B. J., Fukumura, D., Jain, R. K. & Bouma, B. E. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential. Nature Rev. Cancer 12, 363–368 (2012).

    Article  CAS  Google Scholar 

  135. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Med. 15, 1219–1223 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Gao, L. et al. Differential diagnosis of lung carcinoma with coherent anti-Stokes Raman scattering imaging. Arch. Pathol. Lab Med. 136, 1502–1510 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Entenberg, D. et al. Imaging tumor cell movement in vivo. Curr. Protoc. Cell Biol. Chapter 19, Unit19 7 (2013).

  138. Ewald, A. J., Werb, Z. & Egeblad, M. Monitoring of vital signs for long-term survival of mice under anesthesia. Cold Spring Harb. Protoc. 2011, pdb.prot5563 (2011).

    Google Scholar 

  139. Yang, M. et al. Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc. Natl Acad. Sci. USA 100, 14259–14262 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, M. et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc. Natl Acad. Sci. USA 99, 3824–3829 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tanaka, K. et al. In vivo time-course imaging of tumor angiogenesis in colorectal liver metastases in the same living mice using two-photon laser scanning microscopy. J. Oncol. 2012, 265487 (2012).

    Article  PubMed  Google Scholar 

  142. Cao, L., Kobayakawa, S., Yoshiki, A. & Abe, K. High resolution intravital imaging of subcellular structures of mouse abdominal organs using a microstage device. PLoS ONE 7, e33876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jung, J. C., Mehta, A. D., Aksay, E., Stepnoski, R. & Schnitzer, M. J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

    Article  PubMed  Google Scholar 

  144. Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    Article  PubMed  Google Scholar 

  145. Kim, J. K. et al. Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals. Nature Protoc. 7, 1456–1469 (2012).

    Article  CAS  Google Scholar 

  146. Wood, S. Jr. Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch. Pathol. 66, 550–568 (1958).

    PubMed  Google Scholar 

  147. Lehr, H., Leunig, M., Menger, M., Nolte, D. & Messmer, K. Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am. J. Pathol. 143, 1055–1062 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang, L. et al. Imaging glioma initiation in vivo through a polished and reinforced thin-skull cranial window. J. Vis. Exp. 20, 4201 (2012).

    Google Scholar 

  149. Gerritsen, H., Agronskaia, A., Bader, A. & Esposito, A. in FRET and FLIM Techniques (ed. Gadella, T. W. J.) 95–132 (Elsevier Science, 2009).

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the van Rheenen laboratory and J. de Rooij for their critical comments and helpful discussions. The authors apologize to those whose work is not cited owing to space limitations. The authors' research is funded by a Vidi fellowship (91710330; to J.v.R.) and equipment grants (175.010.2007.00 and 834.11.002; to J.v.R.) from the Dutch organization of scientific research (NWO), a grant from the Dutch Cancer Society (KWF; HUBR 2009–4621; to J.v.R.) and a grant from the Association for International Cancer Research (AICR; 13–0297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacco van Rheenen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Stroma

Supporting structures and non-malignant cells surrounding the tumour; mainly consists of the basement membrane, fibroblasts, extracellular matrix, immune cells and vasculature.

Second harmonic generation

(SHG). Certain materials convert light of exactly half the wavelength that they are illuminated with. Owing to their large numbers of aligned α-helices, collagen fibres can be visualized through this principle.

Intravasation

The process by which cells invade through the basement membrane and the endothelium to enter blood vessels.

Photoswitchable fluorophores

Fluorophores that are designed to undergo a non-reversible colour change upon illumination with a laser.

Tongue-holding device

A small metal frame that holds the tongue of a mouse in the same position relative to the lens of a microscope, so that the same imaging position can be imaged in multiple intravital imaging sessions.

Oxygen partial pressure

(PO2). The measure of the pressure of oxygen dissolved in blood.

Quantum dots

Inorganic nanocrystals that typically have a diameter of 2–8 nm. Most are composed of an inner semiconductor core of CdSe, an outer shell of ZnS and an organic coating to make the quantum dot biocompatible. Quantum dots can be engineered to emit fluorescent light in the ultraviolet to infrared spectrum by varying their size.

Interstitial fluid pressure

High interstitial fluid pressure (for example, in the range 10–20 mm Hg) is a characteristic of many human tumours. This build-up of hydrostatic pressure within tumours is thought to be partly due to abnormal and highly permeable tumour vessels and decreased lymphatic drainage.

Spinning-disk confocal microscopy

A confocal scanning microscopy technique that is optimized for imaging speed because it uses an array of moving pinholes on a disc to scan the specimen.

Adult stem cells

A rare population of cells in healthy tissue that have the ability to self-renew and differentiate into specialized cells.

Transit-amplifying cells

Cells that are derived from stem cells, which divide a finite number of times until they become differentiated.

Lineage tracing experiments

Experiments in which the expression of fluorescent markers (such as green fluorescent protein (GFP)) is genetically induced in individual cells, so that their progeny also express this marker and therefore the lineage can be followed.

Cre–Lox system

The Cre recombinase enzyme recombines Lox sequences, which results in the excision or reversion of the DNA that is flanked by Lox sites. This method is often used to activate or inactivate the expression of genes.

Mammary imaging window

A small ring with a coverslip that is surgically implanted into the skin and on top of the mammary gland to provide optical access to breast tissue during repeated intravital imaging sessions.

Ultrasound backscatter microscopy

(UBM). An imaging technique in which an ultrasound pulse is delivered into biological tissue and the backscattered ultrasound is detected. The amplitude of the scattered signal forms the image.

Photoacoustic imaging

(PAI). An imaging technique in which non-ionizing laser pulses are delivered into biological tissues and the absorbed energy leads to ultrasonic emission. The amplitude of the detected emission forms the image.

Thresholding methods

Image segmentation based on pixel intensities.

Abdominal imaging window

A small titanium ring fitted with a coverslip that is surgically implanted into the abdominal wall of an animal to provide optical access to abdominal organs such as the colon, small intestine, liver, spleen, and kidney during repeated intravital imaging sessions.

Confocal laser endomicroscopy

An emerging endoscopic technology that permits high-resolution imaging of the intestine at the cellular or subcellular level.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellenbroek, S., van Rheenen, J. Imaging hallmarks of cancer in living mice. Nat Rev Cancer 14, 406–418 (2014). https://doi.org/10.1038/nrc3742

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3742

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer