Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity

Key Points

  • Pheochromocytomas and paragangliomas carry the highest degree of heritability (around 40%) of all human tumours and thus represent relevant models for the identification of driver mutations in cancer.

  • Genetic testing of inherited mutations allows the identification of co-occurring cancers in hereditary syndromes and screening of at-risk relatives, with an impact on health care.

  • More than 12 genes, belonging to a wide range of functional classes are mutated in the germ line or, less frequently, in somatic pheochromocytomas and paragangliomas, but many tumours remain genetically undefined.

  • Two main transcription signatures, associated with hypoxia-related signals (cluster 1) and increased kinase signalling (cluster 2), underlie the various driver mutations, revealing pathway interactions and enabling the discovery of novel predisposing genes.

  • Mutations of metabolism genes uncovered the cell growth-promoting effects of metabolism intermediates (succinate) through epigenetic (histone and DNA methylation) modulation and activation of a hypoxic response.

  • Mechanisms involved in the malignant transformation of pheochromocytomas and paragangliomas are not fully elucidated, and treatment options for these tumours are still limited.

Abstract

The neuroendocrine tumours pheochromocytomas and paragangliomas carry the highest degree of heritability in human neoplasms, enabling genetic alterations to be traced to clinical phenotypes through their transmission in families. Mutations in more than a dozen distinct susceptibility genes have implicated multiple pathways in these tumours, offering insights into kinase downstream signalling interactions and hypoxia regulation, and uncovering links between metabolism, epigenetic remodelling and cell growth. These advances extend to co-occurring tumours, including renal, thyroid and gastrointestinal malignancies. Hereditary pheochromocytomas and paragangliomas are powerful models for recognizing cancer driver events, which can be harnessed for diagnostic purposes and for guiding the future development of targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relative frequencies of gene mutations in germline or somatic DNA of pheochromocytomas and paragangliomas.
Figure 2: Cluster 1 mutations in paraganglial tumours.
Figure 3: Pheochromocytoma and paraganglioma susceptibility genes in cluster 2.

Similar content being viewed by others

References

  1. Lenders, J. W., Eisenhofer, G., Mannelli, M. & Pacak, K. Phaeochromocytoma. Lancet 366, 665–675 (2005).

    Article  PubMed  Google Scholar 

  2. Manger, W. M. An overview of pheochromocytoma: history, current concepts, vagaries, and diagnostic challenges. Ann. NY Acad. Sci. 1073, 1–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Welander, J., Soderkvist, P. & Gimm, O. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr. Relat. Cancer 18, R253–R276 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Jimenez, C. et al. Current and future treatments for malignant pheochromocytoma and sympathetic paraganglioma. Curr. Oncol. Rep. 15, 356–371 (2013).

    Article  PubMed  Google Scholar 

  5. Gimenez-Roqueplo, A. P., Dahia, P. L. & Robledo, M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm. Metab. Res. 44, 328–333 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Neumann, H. P. et al. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346, 1459–1466 (2002). This study revealed a high frequency of germline mutations in pheochromocytomas and paragangliomas that were previously unsuspected to be hereditary and represented a paradigm shift in the view of these tumours.

    Article  CAS  PubMed  Google Scholar 

  7. Burnichon, N. et al. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum. Mol. Genet. 21, 5397–5405 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Burnichon, N. et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin. Cancer Res. 18, 2828–2837 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Welander, J. et al. Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. Hum. Mol. Genet. 21, 5406–5416 (2012). Papers 7 and 9 revealed an unexpectedly high frequency of somatic mutations of the NF1 gene in pheochromocytomas, opening a new wave of detection of somatic events in these tumours.

    Article  CAS  PubMed  Google Scholar 

  10. Toledo, R. A. et al. In vivo and in vitro oncogenic effects of HIF2A mutations in pheochromocytomas and paragangliomas. Endocr. Relat. Cancer 20, 349–359 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dahia, P. L. et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 1, 72–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Burnichon, N. et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum. Mol. Genet. 20, 3974–3985 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Baysal, B. E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000). This is the first description of a mutation in a component of the energy metabolism pathway, SDHD, in a human tumour model.

    Article  CAS  PubMed  Google Scholar 

  14. Zbuk, K. M. & Eng, C. Cancer phenomics: RET and PTEN as illustrative models. Nature Rev. Cancer 7, 35–45 (2007).

    Article  CAS  Google Scholar 

  15. Kouvaraki, M. A. et al. RET proto-oncogene: a review and update of genotype-phenotype correlations in hereditary medullary thyroid cancer and associated endocrine tumors. Thyroid 15, 531–544 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Kloos, R. T. et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 19, 565–612 (2009).

    Article  PubMed  Google Scholar 

  17. Comino-Mendez, I. et al. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum. Mol. Genet. 22, 2169–2176 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Favier, J., Buffet, A. & Gimenez-Roqueplo, A. P. HIF2A mutations in paraganglioma with polycythemia. N. Engl J. Med. 367, 2161–2162 (2012).

    Article  PubMed  Google Scholar 

  19. Maher, E. R. HIF2 and endocrine neoplasia: an evolving story. Endocr. Relat. Cancer 20, C5–C7 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Zhuang, Z. et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N. Engl. J. Med. 367, 922–930 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fishbein, L., Merrill, S., Fraker, D. L., Cohen, D. L. & Nathanson, K. L. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann. Surg. Oncol. 20, 1444–1450 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jafri, M. & Maher, E. R. The genetics of phaeochromocytoma: using clinical features to guide genetic testing. Eur. J. Endocrinol. 166, 151–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Buffet, A. et al. A decade of genetic testing for pheochromocytoma and paraganglioma. Horm. Metab. Res. 44, 359–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Eisenhofer, G. et al. Distinct gene expression profiles in norepinephrine- and epinephrine-producing hereditary and sporadic pheochromocytomas: activation of hypoxia-driven angiogenic pathways in von Hippel-Lindau syndrome. Endocr. Relat. Cancer 11, 897–911 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Lopez-Jimenez, E. et al. Research resource: Transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol. Endocrinol. 24, 2382–2391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Semenza, G. L. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107, 1–3 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Gruber, M. & Simon, M. C. Hypoxia-inducible factors, hypoxia, and tumor angiogenesis. Curr. Opin. Hematol. 13, 169–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Ivan, M. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Jaakkola, P. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001). Papers 28 and 29 report the regulation of HIFα subunits by prolyl hydroxylation.

    Article  CAS  PubMed  Google Scholar 

  30. Kaelin, W. G. Jr The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nature Rev. Cancer 8, 865–873 (2008).

    Article  CAS  Google Scholar 

  31. Stebbins, C. E., Kaelin, W. G. Jr & Pavletich, N. P. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Shen, C. & Kaelin, W. G. Jr. The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. (2012).

  34. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25, 5675–5686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keith, B., Johnson, R. S. & Simon, M. C. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nature Rev. Cancer 12, 9–22 (2012).

    Article  CAS  Google Scholar 

  36. Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A. & Simon, M. C. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dang, C. V., Kim, J. W., Gao, P. & Yustein, J. The interplay between MYC and HIF in cancer. Nature Rev. Cancer 8, 51–56 (2008).

    Article  CAS  Google Scholar 

  38. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kondo, K., Kim, W. Y., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003). Papers 36, 38 and 39 propose oncogenic roles for HIF2α.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rechsteiner, M. P. et al. VHL gene mutations and their effects on hypoxia inducible factor HIFα: identification of potential driver and passenger mutations. Cancer Res. 71, 5500–5511 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Pollard, P. J. et al. Expression of HIF-1alpha, HIF-2alpha (EPAS1), and their target genes in paraganglioma and pheochromocytoma with VHL and SDH mutations. J. Clin. Endocrinol. Metab. 91, 4593–4598 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Favier, J. et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS ONE 4, e7094 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen, C. et al. Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene. Cancer Discov. 1, 222–235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luo, W., Chang, R., Zhong, J., Pandey, A. & Semenza, G. L. Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc. Natl Acad. Sci. 109, E3367–E3376 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Clifford, S. C. et al. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel- Lindau disease. Hum. Mol. Genet. 10, 1029–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Hoffman, M. A. et al. von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum. Mol. Genet. 10, 1019–1027 (2001). Papers 45 and 46 describe HIF-independent tumorigenesis caused by VHL mutations.

    Article  CAS  PubMed  Google Scholar 

  47. Barontini, M. & Dahia, P. L. VHL disease. Best Pract. Res. Clin. Endocrinol. Metab. 24, 401–413 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Kaelin, W. G. Jr Treatment of kidney cancer: insights provided by the VHL tumor-suppressor protein. Cancer 115, 2262–2272 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Li, M. & Kim, W. Y. Two sides to every story: the HIF-dependent and HIF-independent functions of pVHL. J. Cell. Mol. Med. 15, 187–195 (2010).

    Article  CAS  Google Scholar 

  50. Cecchini, G. Respiratory complex II: Role in cellular physiology and disease. Biochim. Biophys. Acta (BBA) - Bioenerg. 1827, 541–542 (2013).

    Article  CAS  Google Scholar 

  51. Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49–54 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burnichon, N. et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet. 19, 3011–3020 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Niemann, S. & Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genet. 26, 268–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Hao, H. X. et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325, 1139–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Vanharanta, S. et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am. J. Hum. Genet. 74, 153–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Janeway, K. A. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl Acad. Sci. USA 108, 314–318 (2011).

    Article  PubMed  Google Scholar 

  57. Papathomas, T. et al. Non-pheochromocytoma/paraganglioma tumors in patients with succinate dehydrogenase-related pheochromocytoma-paraganglioma syndromes: a clinicopathologic and molecular analysis. Eur. J. Endocrinol. 170, 1–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 77–85 (2005). This is the first study to report succinate accumulation as a result of SDH mutations, and its effects on activity of prolyl hydroxylases and HIF stability.

    Article  CAS  PubMed  Google Scholar 

  59. Xiao, M. et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012). The work reported in this paper shows the effect of SDH and FH deficiency in decreasing the activity of histone and DNA demethylation, leading to an epigenetic effect of global hypermethylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Letouze, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Killian, J. K. et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 3, 648–657 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fendt, S. M. et al. Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nature Commun. 4, 2236 (2013).

    Article  CAS  Google Scholar 

  63. He, W. et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429, 188–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Hakak, Y. et al. The role of the GPR91 ligand succinate in hematopoiesis. J. Leukoc. Biol. 85, 837–843 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Sapieha, P. et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nature Med. 14, 1067–1076 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genet. 30, 406–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: Novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Sullivan, L. B. et al. The Proto-oncometabolite Fumarate Binds Glutathione to Amplify ROS-Dependent Signaling. Mol. Cell 51, 236–248 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sudarshan, S. et al. Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol. Cell. Biol. 29, 4080–4090 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith, E. H., Janknecht, R. & Maher, L. J. 3rd. Succinate inhibition of α-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum. Mol. Genet. 16, 3136–3148 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Ishii, T. et al. A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res. 65, 203–209 (2005).

    CAS  PubMed  Google Scholar 

  72. Selak, M. A., Duran, R. V. & Gottlieb, E. Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells. Biochim. Biophys. Acta 1757, 567–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Guzy, R. D., Sharma, B., Bell, E., Chandel, N. S. & Schumacker, P. T. Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell. Biol. 28, 718–731 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Pollard, P. J. et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14, 2231–2239 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Taieb, D. et al. First report of bilateral pheochromocytoma in the clinical spectrum of HIF2A-related polycythemia-paraganglioma syndrome. J. Clin. Endocrinol. Metab. 98, E908–E913 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lorenzo, F. R. et al. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J. Mol. Med. (Berl.) 91, 507–512 (2013).

    Article  CAS  Google Scholar 

  77. McDonough, M. A. et al. Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc. Natl Acad. Sci. USA 103, 9814–9819 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Min, J. H. et al. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Dahia, P. L. The genetic landscape of pheochromocytomas and paragangliomas: somatic mutations take center stage. J. Clin. Endocrinol. Metab. 98, 2679–2681 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Pacak, K. et al. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J. Clin. Oncol. 31, 1690–1698 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Percy, M. J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358, 162–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tian, H., Hammer, R. E., Matsumoto, A. M., Russell, D. W. & McKnight, S. L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12, 3320–3324 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nilsson, H. et al. HIF-2alpha expression in human fetal paraganglia and neuroblastoma: relation to sympathetic differentiation, glucose deficiency, and hypoxia. Exp. Cell Res. 303, 447–456 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Ladroue, C. et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N. Engl. J. Med. 359, 2685–2692 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Astuti, D. et al. Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility. Endocr. Relat. Cancer 18, 73–83 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gaal, J. et al. Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 95, 1274–1278 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Yao, L. et al. Mutations of the metabolic genes IDH1, IDH2, and SDHAF2 are not major determinants of the pseudohypoxic phenotype of sporadic pheochromocytomas and paragangliomas. J. Clin. Endocrinol. Metab. 95, 1469–1472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mulligan, L. M. et al. Germline mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363, 458–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. The c-ret receptor tyrosine kinase gene is required for the development of the kidney and enteric nervous system. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Jing, S. et al. GDNF-induced activation of the Ret protein tyrosine kinase is mediated by GDNFR-a, a novel receptor for GDNF. Cell 85, 1113–1124 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Neumann, H. P. et al. Consequences of direct genetic testing for germline mutations in the clinical management of families with multiple endocrine neoplasia, type II. JAMA 274, 1149–1151 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Milos, I. N. et al. Age-related neoplastic risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germ line RET Cys634Trp (TGC>TGG) mutation. Endocr. Relat. Cancer 15, 1035–1041 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Waguespack, S. G., Rich, T. A., Perrier, N. D., Jimenez, C. & Cote, G. J. Management of medullary thyroid carcinoma and MEN2 syndromes in childhood. Nature Rev. Endocrinol. 7, 596–607 (2011).

    Article  CAS  Google Scholar 

  94. Toledo, S. P., dos Santos, M. A., Toledo Rde, A. & Lourenco, D. M. Jr. Impact of RET proto-oncogene analysis on the clinical management of multiple endocrine neoplasia type 2. Clin. (Sao Paulo) 61, 59–70 (2006).

    Article  Google Scholar 

  95. Wells, S. A. Jr et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind Phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Asai, N., Iwashita, T., Matsuyama, M. & Takahashi, M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol. Cell. Biol. 3, 1613–1619 (1995).

    Article  Google Scholar 

  97. Santoro, M. et al. Activation of RET as a dominant transforming gene by germline mutations of MEN 2A and MEN 2B. Science 267, 381–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Smith-Hicks, C. L., Sizer, K. C., Powers, J. F., Tischler, A. S. & Costantini, F. C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J. 19, 612–622 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Richardson, D. S., Lai, A. Z. & Mulligan, L. M. RET ligand-induced internalization and its consequences for downstream signaling. Oncogene 25, 3206–3211 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Glerup, S. et al. SorLA controls neurotrophic activity by sorting of GDNF and its receptors GFRalpha1 and RET. Cell Rep. 3, 186–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Hyndman, B. D., Gujral, T. S., Krieger, J. R., Cockburn, J. G. & Mulligan, L. M. Multiple Functional Effects of RET Kinase Domain Sequence Variants in Hirschsprung Disease. Hum. Mutat. 34, 132–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Thosani, S. et al. The characterization of pheochromocytoma and its impact on overall survival in multiple endocrine neoplasia type 2. J. Clin. Endocrinol. Metab. 98, E1813–E1819 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ferner, R. E. Neurofibromatosis 1. Eur. J. Hum. Genet. 15, 131–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. North, K. Neurofibromatosis type 1. Am. J. Med. Genet. 97, 119–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Viskochil, D. et al. Deletions and translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62, 187–192 (1990).

    Article  CAS  PubMed  Google Scholar 

  106. Ballester, R. et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851–859 (1990).

    Article  CAS  PubMed  Google Scholar 

  107. Basu, T. N. et al. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356, 713–715 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Cichowski, K., Santiago, S., Jardim, M., Johnson, B. W. & Jacks, T. Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev. 17, 449–454 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Powers, J. F., Evinger, M. J., Zhi, J., Picard, K. L. & Tischler, A. S. Pheochromocytomas in Nf1 knockout mice express a neural progenitor gene expression profile. Neuroscience 147, 928–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Johannessen, C. M. et al. TORC1 is essential for NF1-associated malignancies. Curr. Biol. 18, 56–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Qin, Y. et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nature Genet. 42, 229–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Comino-Mendez, I. et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nature Genet. 43, 663–667 (2011). Papers 111 and 112 report novel classes of pheochromocytoma susceptibility genes.

    Article  CAS  PubMed  Google Scholar 

  113. Blackwood, E. M., Lüscher, B. & Eisenman, R. N. Myc and Max associate in vivo. Genes Dev. 6, 71–80 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Cascon, A. & Robledo, M. MAX and MYC: a heritable breakup. Cancer Res. 72, 3119–3124 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Ribon, V., Leff, T. & Saltiel, A. R. c-Myc does not require max for transcriptional activity in PC-12 cells. Mol. Cell Neurosci. 5, 277–282 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Seeger, R. C. et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med. 313, 1111–1116 (1985).

    Article  CAS  PubMed  Google Scholar 

  117. Pourdehnad, M. et al. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc. Natl Acad. Sci. 110, 11988–11993 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bernstein, B. E. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  119. Burnichon, N. et al. A novel TMEM127 mutation in a patient with familial bilateral pheochromocytoma. Eur. J. Endocrinol. 164, 141–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Takeichi, N. et al. Identical germline mutations in the TMEM127 gene in two unrelated Japanese patients with bilateral pheochromocytoma. Clin. Endocrinol. (Oxf.) 77, 707–714 (2012).

    Article  CAS  Google Scholar 

  121. Elston, M. S., Meyer-Rochow, G. Y., Prosser, D., Love, D. R. & Conaglen, J. V. Novel mutation in the TMEM127 gene associated with phaeochromocytoma. Intern. Med. J. 43, 449–451 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Abermil, N. et al. TMEM127 screening in a large cohort of patients with pheochromocytoma and/or paraganglioma. J. Clin. Endocrinol. Metab. 97, E805–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Neumann, H. P. et al. Germline mutations of the TMEM127 gene in patients with paraganglioma of head and neck and extraadrenal abdominal sites. J. Clin. Endocrinol. Metab. 96, E1279–1282 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Yao, L. et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA 304, 2611–2619 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Qin, Y. et al. The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function. Hum. Mol. Genet. http://dx.doi.org/10.1093/hmg/ddt638 (2013).

  126. Parachoniak, C. A. & Park, M. Dynamics of receptor trafficking in tumorigenicity. Trends Cell Biol. 22, 231–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, Y. et al. Regulation of endocytosis via the oxygen-sensing pathway. Nature Med. 15, 319–324 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, Y. et al. Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor–mediated upregulation of caveolin-1. Proc. Natl Acad. Sci. 109, 4892–4897 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Brugarolas, J. & Kaelin, W. G. Jr. Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6, 7–10 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Gordan, J. D. et al. HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Semenza, G. L. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 88, 1474–1480 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Lamming, D. W. & Sabatini, D. M. A central role for mTOR in lipid homeostasis. Cell Metab. 18, 465–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Lee, S. et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: Developmental culling and cancer. Cancer Cell 8, 155–167 (2005). This study uncovers a developmental apoptotic defect common to pheochromocytoma and paraganglioma susceptibility mutations.

    Article  CAS  PubMed  Google Scholar 

  135. Crona, J. et al. Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J. Clin. Endocrinol. Metab. 98, E1266–E1271 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Dahia, P. L. et al. Novel pheochromocytoma susceptibility loci identified by integrative genomics. Cancer Res. 65, 9651–9658 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 957–959 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nolting, S. et al. Combined blockade of signalling pathways shows marked anti-tumour potential in phaeochromocytoma cell lines. J. Mol. Endocrinol. 49, 79–96 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ayala-Ramirez, M. et al. Treatment with sunitinib for patients with progressive metastatic pheochromocytomas and sympathetic paragangliomas. J. Clin. Endocrinol. Metab. 97, 4040–4050 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Oh, D. Y. et al. Phase 2 study of everolimus monotherapy in patients with nonfunctioning neuroendocrine tumors or pheochromocytomas/paragangliomas. Cancer 118, 6162–6170 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Hescot, S. et al. One-year progression-free survival of therapy-naive patients with malignant pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab. 98, 4006–4012 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Gimenez-Roqueplo, A. P. et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 63, 5615–5621 (2003). Mutations of SDHB were first recognized to confer a higher risk of malignancy to mutant pheochromocytomas and paragangliomas.

    CAS  PubMed  Google Scholar 

  143. Loriot, C. et al. Epithelial to mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas caused by SDHB gene mutations. J. Clin. Endocrinol. Metab. 97, E954–E962 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tischler, A. S., DeLellis, R. A., Nunnemacher, G. & Wolfe, H. J. Acute stimulation of chromaffin cell proliferation in the adult rat adrenal medulla. Lab Invest. 58, 733–735 (1988).

    CAS  PubMed  Google Scholar 

  146. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell. Metab. 3, 187–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell. Metab. 3, 177–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell. Metab. 7, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Schlisio, S. et al. The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev. 22, 884–893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yeh, I. T. et al. A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum. Genet. 124, 279–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Yoshimoto, K. et al. ras mutations in endocrine tumors: mutation detection by polymerase chain reaction-single strand conformation polymorphism. Jpn J. Cancer Res. 83, 1057–1062 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Wadt, K. et al. A cryptic BAP1 splice mutation in a family with uveal and cutaneous melanoma, and paraganglioma. Pigment Cell. Melanoma Res. 25, 815–818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hensen, E. F. et al. Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene 23, 4076–4083 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Baysal, B. E. Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors. Biochim. Biophys. Acta (BBA) - Bioenerg. 1827, 573–577 (2013).

    Article  CAS  Google Scholar 

  157. Biesecker, L. G. & Spinner, N. B. A genomic view of mosaicism and human disease. Nature Rev. Genet. 14, 307–320 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Cantor, A. M., Rigby, C. C., Beck, P. R. & Mangion, D. Neurofibromatosis, phaeochromocytoma, and somatostatinoma. Br. Med. J. (Clin. Res. Ed) 285, 1618–1619 (1982).

    Article  CAS  Google Scholar 

  159. Buffet, A. et al. Mosaicism in HIF2A-related polycythaemia-paraganglioma syndrome. J. Clin. Endocrinol. Metab. http://dx.doi.org/10.1210/jc.2013-2600

Download references

Acknowledgements

The author is grateful to R. Aguiar for many suggestions and continuing support, to R. Clark for his critical reading of the manuscript, to members of the Dahia laboratory for their assistance and to the collaborators of the FP consortium for their contributions throughout the years. P.L.M.D. is supported by funds from the Cancer Prevention and Research Institute of Texas (CPRIT, RP110202), USA Department of Defense CDMRP (W81XWH-12-1-0508), Voelcker Fund and Greehey Children Cancer Research Institute (GCCRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia L. M. Dahia.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Glossary

Catecholamine

Hormone produced by the chromaffin cells of the adrenal medulla and the postganglionic fibres of the sympathetic nervous system; the main catecholamines are noradrenaline, adrenaline and dopamine.

Hypoxia

Reduced oxygen content, below physiological levels.

Pseudohypoxia

Aberrant activation of hypoxia-inducible factor and induction of its target genes, regardless of oxygen levels.

Dioxygenases

Enzymes that require oxygen and the metabolite α-ketoglutarate as co-substrates. Important members of this class are hypoxia-inducible factor prolyl hydroxylases, Jumonji histone demethylases and TET DNA hydroxylases.

Jumonji (JMJ) demethylase

Dioxygenases of the histone lysine demethylase family, which remove methyl groups of lysines in histones that control active or silent gene expression.

TET

Methyl cytosine dioxygenases that hydroxylate 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC); 5hmC produces G:C base-pair mismatches that are removed by thymine–DNA glycosylase, which results in broad DNA demethylation.

Chromaffin cells

Cells of neural crest origin thought to be the cell of origin of pheochromocytomas and sympathetic paragangliomas.

Somatostatinomas

Rare neuroendocrine tumours that produce the hormone somatostatin and arise from the pancreas, duodenum or bile ducts and can occur in isolation or associated with tumour syndromes such as neurofibromatosis type 1 or multiple endocrine neoplasia type 1.

Polycythemia

An abnormal increase in the number of circulating red cells. Occurs as a result of genetic defects (congenital) or in response to physiological or pathological conditions, including hypoxia.

Familial erythrocytosis type 4

A specific congenital form of polycythemia caused by mutations in the HIF2A gene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahia, P. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer 14, 108–119 (2014). https://doi.org/10.1038/nrc3648

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3648

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer