Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using space-based investigations to inform cancer research on Earth

Key Points

  • In the microgravity environment of space, cells assemble into multicellular three-dimensional constructs.

  • Reduced gravitational force has been shown to have far-ranging effects on cell growth and function, including effects on gene expression, the production of soluble factors, cell signalling and cytoskeletal organization.

  • Suspension-based cell culture can be achieved using the rotating wall bioreactor, clinostat, random positioning machine and magnetic levitation. These models provide certain conditions that are observed during culture in microgravity, including lack of sedimentation, reduced fluid shear, optimized cellular colocation and three-dimensional growth.

  • Research approaches derived from space-based investigations may be applicable to advance our knowledge of tumour biology, as well as inform the development of new anticancer technologies and therapeutic strategies.

Abstract

Experiments conducted in the microgravity environment of space are not typically at the forefront of the mind of a cancer biologist. However, space provides physical conditions that are not achievable on Earth, as well as conditions that can be exploited to study mechanisms and pathways that control cell growth and function. Over the past four decades, studies have shown how exposure to microgravity alters biological processes that may be relevant to cancer. In this Review, we explore the influence of microgravity on cell biology, focusing on tumour cells grown in space together with work carried out using models in ground-based investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RWV bioreactor 3D cell culture.
Figure 2: The RPM.
Figure 3: Magnetic levitation 3D cell culture.
Figure 4: 3D tumour cell aggregates.
Figure 5: Culture of LN1 human mixed mullerian ovarian tumour cells aboard the ISS.

Similar content being viewed by others

References

  1. van Loon, J. J. W. A. in Biology in Space and Life on Earth. Effects of Spaceflight on Biological Systems (ed. Brinckmann, E.) 17–32 (Wiley-VCH, 2007).

    Book  Google Scholar 

  2. NASA. What is Microgravity? [online], (2013).

  3. Unsworth, B. R. & Lelkes, P. I. Growing tissues in microgravity. Nature Med. 4, 901–907 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Todd, P. Gravity-dependent phenomena at the scale of the single cell. ASGSB Bull. 2, 95–113 (1989).

    CAS  PubMed  Google Scholar 

  5. Hammond, T. G. & Hammond, J. M. Optimized suspension culture: the rotating-wall vessel. Am. J. Physiol. Renal Physiol. 281, F12–F25 (2001). This paper reviews the engineering principles of suspension culture and presents mechanisms for the changes in the properties of cells cultured in suspension; the operating parameters for the RWV culture system are also detailed in this review.

    Article  CAS  PubMed  Google Scholar 

  6. Freed, L. E., Langer, R., Martin, I., Pellis, N. R. & Vunjak-Novakovic, G. Tissue engineering of cartilage in space. Proc. Natl Acad. Sci. USA 94, 13885–13990 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Montgomery, P. O. et al. in Biomedical Results from Skylab (eds Johnson, R. S. & Dietlein, L. F.) 221–234 (Scientific and Technical Information Office, 1977).

    Google Scholar 

  8. Montgomery, P. O. et al. The response of single human cells to zero-gravity. In Vitro 14, 165–173 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Kimzey, S. L., Ritzmann, S. E., Mengel, C. E. & Fischer, C. L. Skylab experiment results: hematology studies. Acta Astronaut. 2, 141–154 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Kimzey, S. L. in Biomedical Results from Skylab ( eds Johnson, R. S. & Dietlein, L. F. ) 249–282 (Scientific and Technical Information Office, 1977).

    Google Scholar 

  11. Cogoli, A. Hematological and immunological changes during spaceflight. Acta Astronaut. 8, 995–1002 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Cogoli, A. Space flight and the immune system. Vaccine 11, 496–503 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Bilodeau, K. & Mantovani, D. Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue Eng. 12, 2367–2383 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Souza, G. R. et al. Three-dimensional tissue culture based on magnetic cell levitation. Nature Nanotechnol. 5, 291–296 (2010). This paper presents the operating parameters for magnetic levitation cell culture.

    Article  CAS  Google Scholar 

  15. Emerman, J. T. & Pitelka, D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13, 316–328 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, E. Y., Lee, W. H., Kaetzel, C. S., Parry, G. & Bissell, M. J. Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion. Proc. Natl Acad. Sci. USA 82, 1419–1423 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods 4, 359–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Ann. Rev. Cell Dev. Biol. 22, 287–309 (2006).

    Article  CAS  Google Scholar 

  20. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Nederman, T., Norling, B., Glimelius, B., Carlsson, J. & Brunk, U. Demonstration of an extracellular matrix in multicellular tumor spheroids. Cancer Res. 44, 3090–3097 (1984).

    CAS  PubMed  Google Scholar 

  22. Nederman, T. Effects of vinblastine and 5-fluorouracil on human glioma and thyroid cancer cell monolayers and spheroids. Cancer Res. 44, 254–258 (1984).

    CAS  PubMed  Google Scholar 

  23. Acker, H., Carlsson, J., Holtermann, G., Nederman, T. & Nylen, T. Influence of glucose and buffer capacity in the culture medium on growth and pH in spheroids of human thyroid carcinoma and human glioma origin. Cancer Res. 47, 3504–3508 (1987).

    CAS  PubMed  Google Scholar 

  24. Carlsson, J. & Nederman, T. A method to measure the radio and chemosensitivity of human spheroids. Adv. Exp. Med. Biol. 159, 399–417 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Acker, H., Holtermann, G., Bolling, B. & Carlsson, J. Influence of glucose on metabolism and growth of rat glioma cells (C6) in multicellular spheroid culture. Int. J. Cancer 52, 279–285 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Acker, H. The use of human tumor cells grown in multicellular spheroid culture for designing and improving therapeutic strategies. J. Theor. Med. 1, 193–207 (1998).

    Article  Google Scholar 

  27. Kunz-Schughart, L. A., Kreutz, M. & Kneuchel, R. Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int. J. Exp. Path. 79, 1–23 (1998).

    Article  CAS  Google Scholar 

  28. Tsao, Y. D., Goodwin, T. J., Wolf, D. A. & Spaulding, G. F. Responses of gravity level variations on the NASA/JSC bioreactor system. Physiologist 35, S49–S50 (1992).

    CAS  PubMed  Google Scholar 

  29. Schwarz, R. P., Goodwin, T. J. & Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tiss. Cult. Meth. 14, 51–57 (1992).

    Article  CAS  Google Scholar 

  30. Jessup, J. M., Goodwin, T. J. & Spaulding, G. F. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. J. Cell. Biochem. 51, 290–300 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Goodwin, T. J., Prewett, T. L., Wolf, D. A. & Spaulding, G. F. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J. Cell Biochem. 51, 301–311 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Klaus, D. M. Clinostats and bioreactors. Grav. Space Biol. Bull. 14, 55–64 (2001). This paper presents the engineering principles and operating parameters for clinorotation.

    CAS  Google Scholar 

  33. Mazzoleni, G., Di Lorenzo, D. & Steimberg, N. Modeling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr. 4, 13–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Briegleb, W. Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull. 5, 23–30 (1992).

    CAS  PubMed  Google Scholar 

  35. Kessler, J. O. The internal dynamics of slowly rotating biological systems. ASGSB Bull. 5, 11–21 (1992).

    CAS  PubMed  Google Scholar 

  36. Becker, J. L. & Blanchard, D. K. Characterization of primary breast carcinomas grown in three-dimensional cultures. J. Surg. Res. 142, 256–262 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Kaur, P. et al. Human breast cancer histoid: an in vitro 3-dimensional co-culture model that mimics breast cancer tissue. J. Histochem. Cytochem. 59, 1087–1100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vamvakidou, A. P. et al. Heterogeneous breast tumoroids: an in vitro assay for investigating cellular heterogeneity and drug delivery. J. Biomol. Screen. 12, 13–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Chopra, V., Dinh, T. V. & Hannigan, E. V. Three-dimensional endothelial-tumor epithelial cell interactions in human cervical cancer. In Vitro Cell. Dev. Biol. Anim. 33, 432–442 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Goodwin, T. J., Jessup, J. M. & Wolf, D. A. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell. Dev. Biol. Anim. 28, 47–60 (1992).

    Article  Google Scholar 

  41. Jessup, J. M. et al. Induction of carcinoembryonic antigen expression in a three-dimensional culture system. In Vitro Cell. Dev. Biol. Anim. 33, 352–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Jessup, J. M. et al. Microgravity culture reduces apoptosis and increases the differentiation of a human colorectal carcinoma cell line. In Vitro Cell. Dev. Biol. Anim. 36, 367–373 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Chang, T. T. & Hughes-Fulford, M. Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng. Part A 15, 559–567 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang, J. et al. A three dimensional cell biology model of human hepatocellular carcinoma in vitro. Tumour Biol. 32, 469–479 (2011).

    Article  PubMed  Google Scholar 

  45. Redden, R. A. & Doolin, E. J. Microgravity assay of neuroblastoma: in vitro aggregation kinetics and organoid morphology correlate with MYCN expression. In Vitro Cell. Dev. Biol. Anim. 47, 312–317 (2011).

    Article  PubMed  Google Scholar 

  46. Taga, M. et al. Melanoma growth and tumorigenicity in models of microgravity. Aviat. Space Environ. Med. 77, 1113–1116 (2006).

    PubMed  Google Scholar 

  47. Marrero, B., Messina, J. L. & Heller, R. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma. In Vitro Cell. Dev. Biol. Anim. 45, 523–534 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Licato, L. L., Prieto, V. G. & Grimm, E. A. A novel preclinical model of human malignant melanoma utilizing bioreactor rotating-wall vessels. In Vitro Cell. Dev. Biol. Anim. 37, 121–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Becker, J. L., Prewett, T. L., Spaulding, G. F. & Goodwin, T. J. Three-dimensional growth and differentiation of ovarian tumor cell line in high aspect rotating wall vessel: morphologic and embryologic considerations. J. Cell. Biochem. 51, 283–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Goodwin, T. J., Prewett, T. L., Spaulding, G. F. & Becker, J. L. Three-dimensional culture of a mixed mullerian tumor of the ovary: expression of in vivo characteristics. In Vitro Cell. Dev. Biol. Anim. 33, 366–374 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Zhau, H. E., Goodwin, T. J., Chang, S. M., Baker, T. L. & Chung, L. W. Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen induced growth and PSA expression. In Vitro Cell. Dev. Biol. Anim. 33, 375–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Ingram, M. et al. Three-dimensional growth of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell. Dev. Biol. Anim. 33, 459–466 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, R. et al. Three-dimensional co-culture models to study prostate cancer growth, progression and metastasis to bone. Semin. Cancer Biol. 15, 353–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Sung, S. Y. et al. Coevolution of prostate cancer and bone stroma in three-dimensional coculture: implications for cancer growth and metastasis. Cancer Res. 68, 9996–10003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clejan, S., O'Connor, K. & Rosensweig, N. Tri-dimensional prostate cell cultures in simulated microgravity and induced changes in lipid second messengers and signal transduction. J. Cell. Mol. Med. 5, 60–73 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matsuoka, R., Ohkubo, S., Yoshida, M. & Nakahata, N. Alteration of adenylyl cyclase type 6 expression in human astrocytoma cells after exposure to simulated microgravity. J. Health Sci. 53, 534–542 (2007).

    Article  CAS  Google Scholar 

  57. Rijken, P. J. et al. Epidermal growth factor-induced cell rounding is sensitive to simulated microgravity. Aviat. Space Environ. Med. 62, 32–36 (1991).

    CAS  PubMed  Google Scholar 

  58. Rijken, P. J. et al. Altered gravity conditions affect early EGF-induced signal transduction in human epidermal A431 cells. ASGSB Bull. 5, 77–82 (1992).

    CAS  PubMed  Google Scholar 

  59. Rijken, P. J. et al. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells. Adv. Space Res. 12, 145–152 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Kaneko, T. et al. Simulated conditions of microgravity increase progesterone production in I-10 Leydig tumor cell line. Int. J. Urol. 15, 245–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Ivanova, K. et al. Natriuretic peptide-sensitive guanylyl cyclase expression is down-regulated in human melanoma cells at simulated weightless. Acta Astronaut. 68, 652–655 (2011).

    Article  CAS  Google Scholar 

  62. Qu, L. et al. Protective effects of flavonoids against oxidative stress induced by simulated microgravity in SH-SY5Y cells. Neurochem. Res. 35, 1445–1454 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Granet, C., Boutahar, N., Vico, L., Alexandre, C. & Lafage-Proust, M. H. MAPK and SRC-kinases control EGR-1 and NF-kappa B inductions by changes in mechanical environment in osteoblasts. Biochem. Biophys. Res. Commun. 284, 622–631 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Kobayashi, K. et al. TNF-alpha-dependent activation of NF-kappa B in human osteoblastic HOS-TE85 cells is repressed in vector-averaged gravity using clinostat rotation. Biochem. Biophys. Res. Commun. 279, 2258–2264 (2000).

    Article  CAS  Google Scholar 

  65. Sarkar, D., Nagaya, T., Koga, K. & Seo, H. Culture in vector-averaged gravity environment in a clinostat results in detachment of osteoblastic ROS 17/2.8 cells. Environ. Med. 43, 22–24 (1999).

    CAS  PubMed  Google Scholar 

  66. Grimm D. et al. Effects of simulated microgravity on thyroid carcinoma cells. J. Gravit. Physiol. 9, 39–42 (2002).

    Google Scholar 

  67. Grimm, D. et al. Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J. 16, 604–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Kossmehl, P. et al. Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinol. 144, 4172–4179 (2003).

    Article  CAS  Google Scholar 

  69. Infanger, M. et al. Long-term conditions of mickmicked weightlessness influences the cytoskeleton in thyroid cells. J. Gravit. Physiol. 11, 169–172 (2004).

    Google Scholar 

  70. Infanger, M. et al. Simulated weightless changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res. 324, 267–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Grosse, J. et al. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J. 26, 5124–5140 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Borst, A. G. & van Loon, J. J.W. A. Technology and developments for the random positioning machine, RPM. Micrograv. Sci. Technol. 21, 287–292 (2007). This paper presents the engineering principles and operating parameters for the RPM.

    Article  Google Scholar 

  73. Leguy, C. A. D. et al. Fluid motion for microgravity simulations in a random positioning machine. Grav. Space Biol. 25, 36–39 (2011).

    Google Scholar 

  74. Huijser, R. H. Desktop RPM: new small size microgravity simulator for the bioscience laboratory. [online], (2000).

  75. Pardo, S. J. et al. Simulated microgravity using the random positioning machine inhibits differentiation and alters gene expression of 2T3 preosteoblasts. Am. J. Physiol. Cell Physiol. 288, C1211–C1221 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Takeda, M. et al. Effects of simulated microgravity on proliferation and chemosensitivity in malignant glioma cells. Neurosci. Lett. 463, 54–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Monici, M. et al. Modeled gravitational unloading triggers differentiation and apoptosis in preosteoblastic cells. J. Cell. Biochem. 98, 65–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Cuccarolo, P., Barbieri, F. Sancandi, M. Viaggi, S. & Degan, P. Differential behaviour of normal, transformed and Fanconi's anemia lymphoblastoid cells to modeled microgravity. J. Biomed. Sci. 17, 63–72 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Han, J. et al. Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture. PLoS Computational Biology 6, e1000684 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kim, J. B., Stein, R. & O'Hare, M. J. Three-dimensional in vitro tissue culture models of breast cancer – a review. Breast Cancer Res. Treat. 85, 281–291 (2004).

    Article  PubMed  Google Scholar 

  81. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell. Biol. 7, 211–224 (2006).

    Article  CAS  Google Scholar 

  82. Boudreau, N. & Weaver, V. Forcing the Third Dimension. Cell 125, 429–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, J., Cuddihy, M. J. & Kotov, N. A. Three-dimensional cell culture matrices: state of the art. Tissue Eng. Part B Rev. 14, 61–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Molina, J., Hayashi, Y., Stephens, C. & Georgescu, M. M. Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 12, 453–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, J. S., Morrisett, J. D. & Tung, C. H. Detection of hydroxyapatite in calcified cardiovascular tissues. Atheroscler. 224, 3340–3347 (2012).

    Google Scholar 

  86. Valles, J. M., Lin, K., Denegre, J. M. & Mowry, K. L. Stable magnetic field gradient levitation of Xenopus laevis: toward low gravity simulation. Biophys. J. 73, 1130–1133 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Valles, J. M. & Guevorkian, L. K. Low gravity on earth by magnetic levitation of biological material. J. Gravit. Physiol. 9, 7–10 (2002).

    Google Scholar 

  88. Coleman, C. B. et al. Diamagnetic levitation changes growth, cell cycle, and gene expression of Saccharomyces cerevisiae. Biotechnol. Bioeng. 98, 854–863 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Valles, J. M., Maris, H. J. Seidel, G. M., Tang, J. & Yao, W. Magnetic levitation-based Martian and Lunar gravity simulator. Adv. Space Res. 36, 114–118 (2005).

    Article  PubMed  Google Scholar 

  90. Daquinag, A. C., Souza, G. R. & Kolonin, M. G. Adipose tissue engineering in three-dimensional levitation culture system based on magnetic nanoparticles. Tiss. Engr. Part C Meth. 19, 336–344 (2013).

    Article  CAS  Google Scholar 

  91. Tseng, H. et al. Assembly of a three-dimensional multitype bronchiole co-culture model using magnetic levitation. Tiss. Eng. Part C Methods 25 Feb 2013 (doi:10.1089/ten.TEC.2012.0157).

  92. Chitocholtan, K., Sykes, P. H. & Evans, J. J. The resistance of intracellular mediators to doxorubicin and cisplatin are distinct in 3D and 2D endometrial cancer. J. Transl. Med. 10, 38 (2012).

    Article  CAS  Google Scholar 

  93. Hammer, B. E., Kidder, L. S., Williams, P. C. & Xu, W. W. Magnetic levitation of MC3T3 osteoblast cells as a ground based simulation of microgravity. Micrograv. Sci. Technol. 21, 311–318 (2009).

    Article  CAS  Google Scholar 

  94. Qian, A. R. et al. Large gradient high magnetic field affects the association of MACF-1 with actin and microtubule cytoskeleton. Bioelectromag. 30, 545–555 (2009).

    Article  CAS  Google Scholar 

  95. Lawler, K., Foran, E., O'Sullivan, G., Long, A. & Kenny, D. Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner. Am. J. Physiol. Cell Physiol. 291, C668–C677 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Lawler, K., O'Sullivan, G., Long, A. & Kenny, D. Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci. 100, 1082–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Liang, S., Hoskins, M., Khanna, P., Kunz, R. F. & Dong, C. Effects of tumor-leukocyte environment on melanoma – neutrophil adhesion to the endothelium in a shear flow. Cell. Mol. Bioeng. 1, 189–200 (2008).

    Article  PubMed  Google Scholar 

  98. Michor, F., Liphardt, J., Ferrari, M. & Widom, J. What does physics have to do with cancer? Nature Rev. Cancer 11, 657–670 (2011).

    Article  CAS  Google Scholar 

  99. Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Rev. Cancer 11, 512–522 (2011). This paper reviews key elements of the effect of physical forces on cancer cell metastasis in the context of a 3D configuration.

    Article  CAS  Google Scholar 

  100. Kim, Y. J. et al. Overcoming evasive resistance from vascular endothelial growth factor A inhibition in sarcomas by genetic or pharmacologic targeting of hypoxia-inducing factor 1 alpha. Int. J. Cancer 132, 29–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Murat, A. et al. Modulation of angiogenic and inflammatory response in glioblastoma by hypoxia. PLoS ONE 4, e5947 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Talbot, L. J., Bhattacharya, S. D. & Kuo, P. C. Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. Int. J. Biochem. 3, 117–136 (2012).

    CAS  Google Scholar 

  103. Roberts, D. L. et al. Contribution of HIF-1 and drug penetrance to oxaliplatin resistance in hypoxic colorectal cancer cells. Br. J. Cancer 101, 1290–1297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dufau, I. et al. Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer 13 Jan 2012 (doi:10.1186/1471-2407).

  105. Kobayashi, H. et al. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc. Natl Acad. Sci. USA 90, 3294–3298 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Graham, C. H. et al. Rapid acquisition of multicellular drug resistance after a single exposure of mammary tumor cells to antitumor alkylating agents. J. Natl Cancer Inst. 86, 975–982 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Kerbel, R. S., St. Croix, B., Florenes, V. A. & Rak, J. Induction and reversal of cell adhesion-dependent multicellular drug resistance in solid breast tumors. Hum. Cell 9, 257–264 (1996).

    CAS  PubMed  Google Scholar 

  108. Desoize, B. & Jardillier, J. C. Multicellular resistance: a paradigm for clinical resistance? Crit. Rev. Oncol. Hematol. 36, 193–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Sonnenfeld, G. et al. Spaceflight alters immune cell function and distribution. J. Appl. Physiol. 73, 191S–195S (1992).

    Article  CAS  PubMed  Google Scholar 

  110. Lesnyak, A. T. et al. Immune changes in test animals during spaceflight. J. Leuk. Biol. 54, 214–226 (1993).

    Article  CAS  Google Scholar 

  111. Sonnenfeld, G. et al. Spaceflight and development of immune responses. J. Appl. Physiol. 85, 1429–1433 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Taylor, G. R., Kostantinova, I., Sonnenfeld, G. & Jennings, R. Changes in the immune system during and after spaceflight. Adv. Space Biol. Med. 6, 1–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Gridley, D. S. et al. Spaceflight effects on T lymphocyte distribution, function and gene expression. J. Appl. Physiol. 106, 194–202 (2009). This paper presents microgravity-induced effects on T cells, as well as on the expression of cancer-associated genes, and also reviews earlier studies on the effects of reduced gravity exposure on the immune system.

    Article  PubMed  Google Scholar 

  114. Chapes, S. K., Morrison, D. R., Guikema, J. A., Lewis, M. L. & Spooner, B. S. Cytokine secretion by immune cells in space. J. Leuk. Biol. 52, 104–110 (1992).

    Article  CAS  Google Scholar 

  115. Miller, E. S., Koebel, D. A. & Sonnenfeld, G. A. Influence of spaceflight on the production of interleukin-3 and interleukin-6 by rat spleen and thymus cells. J. Appl. Physiol. 78, 810–813 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Reynolds, R. J. & Day, S. M. Mortality among US astronauts: 1980–2009. Aviat. Space Environ. Med. 81, 1024–1027 (2010).

    Article  PubMed  Google Scholar 

  117. Longnecker, D. E., Manning, F. J. & Worth, M. H. (eds) in Review of NASA's Longitudinal Study of Astronaut Health 24–25 (Institute of Medicine of the National Academies, 2004).

    Google Scholar 

  118. Hammond, T. G. et al. Gene expression in space. Nature Med. 5, 359 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Hammond, T. G. et al. Mechanical culture conditions affect gene expression: gravity-induced changes on the space shuttle. Physiol. Genom. 8, 163–173 (2000). This paper details the first demonstration of microgravity exposure to elicit broad modulation of cellular gene expression.

    Article  Google Scholar 

  120. Lewis, M. L. et al. cDNA microarray reveals altered cytoskeletal expression in space-flown leukemic T lymphocytes (Jurkat). FASEB J. 15, 1783–1805 (2001). This paper details the first demonstration of microgravity-induced alterations of global gene expression in Jurkat cells and provides insight into potential mechanisms underlying cellular cytoskeletal disruption occurring in space.

    Article  CAS  PubMed  Google Scholar 

  121. Lewis, M. L. et al. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J. 12, 1007–1018 (1998).

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, Z. J. et al. Spaceflight alters the gene expression profile of cervical cancer cells. Chin. J. Cancer 30, 842–852 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Guo, F. et al. Identification of genes associated with tumor development in CaSki cells in the cosmic space. Mol. Biol. Rep. 39, 6923–6931 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Bausch, D. et al. Plectin-1 as a novel biomarker for pancreatic cancer. Clin. Cancer Res. 17, 302–309 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Svitkina, T. M., Verkhovsky, A. B. & Borisy, G. B. Plectin sidearms mediate interactions of intermediate filaments with microtubules and other components of the cytoskeleton. J. Cell Biol. 135, 991–1007 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Katada, K. et al. Plectin promotes migration and invasion of cancer cells and is a novel prognostic marker for head and neck squamous cell carcinoma. J. Proteom. 75, 1803–1815 (2012).

    Article  CAS  Google Scholar 

  127. McInroy, L. & Maatta, A. Plectin regulates invasiveness of SW480 colon carcinoma cells and is targeted to podosome-like adhesions in an isoform-specific manner. Exp. Cell Res. 317, 2468–2478 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Schmitt, D. A. et al. The distribution of protein kinase C in human leukocytes is altered in microgravity. FASEB J. 10, 1627–1634 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Hatton, J. P. et al. The kinetics of translocation and cellular quantity of protein kinase C in human leukocytes are modified during spaceflight. FASEB J. 13, S23–S33 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Hatton, J. P., Gaubert, F., Cazenave, J. P. & Schmitt, D. Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T cells. J. Cell. Biochem. 87, 39–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Carmeliet, G., Nys, G. & Bouillon, R. Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J. Bone Min. Res. 12, 786–794 (1997).

    Article  CAS  Google Scholar 

  132. Piepmeier, E. H., Kalns, J. E., McIntyre, K. M. & Lewis, M. L. Prolonged weightlessness affects promyelocytic multidrug resistance. Exp. Cell Res. 237, 410–418 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Vassy, J . et al. The effect of weightlessness on cytoskeletal architecture and proliferation of human breast cancer cell line MCF-7. FASEB J. 15, 1104–1106 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Wagner, H. E. et al. Characterization of the tumorigenic and metastatic potential of a poorly differentiated human colon carcinoma cell line. Invasion Met. 10, 253–266 (1990).

    CAS  Google Scholar 

  135. Hammond, D. K. et al. Antigenic protein in microgravity-grown human mixed mullerian ovarian tumor (LN1) cells preserved in RNA stabilizing agent. Grav. Space Biol. 18, 99–100 (2005).

    CAS  Google Scholar 

  136. Wang, Y. et al. Regulatory effect of E2, IL-6 and IL-8 on the growth of epithelial ovarian cancer cells. Cell. Mol. Immunol. 2, 365–372 (2005).

    CAS  PubMed  Google Scholar 

  137. Duan, Z., Feller, A. J., Penson, R. T., Chabner, B. A. & Seiden, M. V. Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology: analysis of interleukin (IL) 6, IL-8 and monocyte chemotactic protein 1 in the paclitaxel resistant phenotype. Clin. Cancer Res. 5, 3445–3553 (1999).

    CAS  PubMed  Google Scholar 

  138. Wang, Y. et al. Reciprocal regulation of 5 alpha-dihydrotesterone, interleukin-6 and interleukin-8 during proliferation of epithelial ovarian carcinoma. Cancer Biol. Therap. 6, 864–871 (2007).

    Article  CAS  Google Scholar 

  139. Yin, Y., Si, X., Gao, Y., Gao, L. & Wang, J. The nuclear factor-κB correlates with increased expression of interleukin-6 and promotes progression of gastric carcinoma. Oncol. Rep. 29, 34–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Tran, H. et al. Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanid for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials. Lancet Oncol. 13, 827–837 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Shi, Z. et al. Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8. Breast Cancer Res. Treat. 135, 737–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Becker, J. L., Papenhausen, P. R. & Widen, R. H. Cytogenetic, morphologic and oncogene analysis of cell line derived from heterologous mixed mullerian tumor of the ovary. In Vitro Cell. Dev. Biol. Anim. 33, 325–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Twombly, R. Prostate modeling experiment success becomes part of legacy of shuttle astronauts. J. Natl Cancer Inst. 95, 505–507 (2003).

    Article  PubMed  Google Scholar 

  144. Chong, H. C., Tan, C. K., Huang, R. & Tan, N. S. Matricellular proteins: a sticky affair with cancers. J. Oncol. 9 Feb 2012 (doi:10.1155/2012/351089).

  145. Midwood, K. S., Hussenet, T., Langlois, B. & Orend, G. Advances in tenascin-c biology. Cell. Mol. Life Sci. 68, 3175–3199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lewis, M. L. The cytoskeleton in spaceflown cells: an overview. Grav. Space Biol. Bull. 17, 1–11 (2004). This paper reviews key concepts and mechanisms regarding cell shape changes and associated cytoskeletal alterations induced by microgravity exposure.

    Google Scholar 

  147. Tabony, J. Gravity dependence of microtubule self-organization. Grav. Space Biol. Bull. 17, 13–25 (2004). This paper describes the influence of spatial configuration and gravity on microtubule reaction-diffusion processes.

    Google Scholar 

  148. Papaseit, C., Pochon, N. & Tabony, J. Microtubule self-organization is gravity-dependent. Proc. Natl Acad. Sci. USA 97, 8364–8368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Glade, N., Beaugnon, E. & Tabony, J. Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organisation. Biophys. Biochem. 121, 1–6 (2006).

    CAS  Google Scholar 

  150. Korb, T. et al. Integrity of actin fibers and microtubules influences metastatic tumor adhesion. Exp. Cell Res. 299, 236–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kim, Y., Stolarska, M. A. & Othmer, H. G. The role of microenvironment in tumor growth and invasion. Prog. Biophys. Mol. Biol. 106, 353–379 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wang, N. & Ingber, D. E. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66, 2181–2189 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ingber, D. E. From cellular mechanotransduction to biologically inspired engineering. Ann. Biomed. Eng. 38, 1148–1161 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Wang, N. et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl Acad. Sci. USA 98, 7765–7770 (2001). This paper details cellular structure and biomechanics as governed by the principles of tensegrity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ingber, D. E. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Ingber, D. How cells (might) sense microgravity. FASEB J. 13, S3–S15 (1999). This paper reviews how cells may perceive, and respond mechanically, to alterations in gravity.

    Article  CAS  PubMed  Google Scholar 

  159. Stein, G. S. et al. Implications for interrelationships between nuclear architecture and control of gene expression under microgravity conditions. FASEB J. 13, S157–S166 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Guignandon, A. et al. Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17\\2.8 cells exposed to space-related conditions. FASEB J. 15, 2036–2038 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Xu, W. et al. Cell stiffness if a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 7, e46609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophy. J. 88, 3689–3698 (2005).

    Article  CAS  Google Scholar 

  163. Todd, P. Overview of the spaceflight radiation environment and its impact on cell biology experiments. J. Gravit. Space Phys. 11, 11–16 (2004).

    Google Scholar 

  164. Manti, L. Does reduced gravity alter cellular response to ionizing radiation? Radiat. Environ. Biophys. 45, 1–8 (2006).

    Article  PubMed  Google Scholar 

  165. Cucinotta, F. A. Once we know all the radiobiology we need to know, how can we use it to predict space radiation risks and achieve fame and fortune? Phys. Med. 17, 5–12 (2001).

    PubMed  Google Scholar 

  166. Dieriks, B. et al. Multiplexed profiling of secreted proteins for the detection of potential space biomarkers. Mol. Med. Rep. 4, 17–23 (2011).

    CAS  PubMed  Google Scholar 

  167. Durante, M. Biomarkers of space radiation risk. Radiat. Res. 164, 467–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Albi, E. et al. Thyroid cell growth: sphingomyelin metabolism as non-invasive marker for cell damage acquired during spaceflight. Astrobiol. 10, 811–820 (2010).

    Article  CAS  Google Scholar 

  169. Nichols, H. L. Zhang, N. & Wen. X. Proteomics and genomics of microgravity. Physiol. Genom. 26, 163–171 (2006).

    Article  CAS  Google Scholar 

  170. Grimm, D., Wise, P., Lebert, M., Richter, P. & Baatout, S. How and why does the proteome respond to gravity? Expert Rev. Proteom. 8, 13–27 (2011).

    Article  Google Scholar 

  171. Cao, Y., DePinho, R. A., Ernst, M. & Vousden, K. Cancer research: past, present and future. Nature Rev. Cancer 11, 749–754 (2011).

    Article  CAS  Google Scholar 

  172. Canadian Space Agency. Cancer treatment delivery. International Space Station Benefits for Humanity [online], (2012).

  173. Le Pivert, P. et al. Ultrasound guided combined cryoablation and microencapsulated 5-fluorouracil inhibits growth of human prostate tumors in xenogenic mouse model assessed by luminescence imaging. Technol. Cancer Res.Treat. 3, 135–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Le Pivert, P. et al. Percutaneous tumor ablation: microencapsulated echo-guided interstitial chemotherapy combined with cryosurgery increases necrosis in prostate cancer. Technol. Cancer Res. Treat. 8, 207–216 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Brown, C. S., Tibbits, T. W., Croxdale, J. G. & Wheeler, R. M. Potato tuber formation in the spaceflight environment. Life Support Biosph. Sci. 4, 71–76 (1997).

    CAS  PubMed  Google Scholar 

  176. Tibbitts, T. W., Croxdale, J. C., Brown, C. S., Wheeler, R. M. & Goins, G. D. Ground-based studies and space experiment with potato leaf explants. Life Support Biosph. Sci. 6, 97–106 (1999).

    CAS  PubMed  Google Scholar 

  177. Whelan, H. T. et al. Effect of NASA light-emitting diode irradiation on molecular changes for wound healing diabetic mice. J. Clin. Laser Med. Surg. 21, 67–74 (2003).

    Article  PubMed  Google Scholar 

  178. Hodgson, B. D. et al. Amelioration of oral mucositis pain by NASA near-infrared light-emitting diodes in bone marrow transplant patients. Support Care Cancer 20, 1405–1415 (2012).

    Article  PubMed  Google Scholar 

  179. Bjordal, J. M., Johnson, M. I., Iversen, V., Aimbire, F. & Lopes-Martins, R. A. Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed. Laser Surg. 24, 158–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Albertini, R. et al. COX-2 mRNA expression decreases in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low level laser therapy. Inflamm. Res. 56, 228–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Fucci, R. L. et al. Toward optimizing lighting as a countermeasure to sleep and circadian disruption in space flight. Acta Astronaut. 56, 1017–1024 (2005).

    Article  PubMed  Google Scholar 

  182. Brainard, G. C. et al. Sensitivity of the human circadian system to short-wavelength (420 nm) light. J. Biol. Rhythms 23, 379–386 (2008).

    Article  PubMed  Google Scholar 

  183. West, K. E. et al. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J. Appl. Physiol. 110, 619–626 (2011).

    Article  PubMed  Google Scholar 

  184. Blask, D. E., Dauchy, R. T., Brainard, G. C. & Hanifin, J. P. Circadian stage-dependent inhibition of human breast cancer metabolism and growth by the nocturnal melatonin signal: consequences of its disruption by light at night in rats and women. Integr. Cancer Therap. 8, 347–353 (2009).

    Article  CAS  Google Scholar 

  185. Glickman, G., Levin, R. & Brainard, G. C. Ocular input for human melatonin regulation: relevance to breast cancer. Neuro. Endocrinol. Lett. 23, 17–22 (2002).

    CAS  PubMed  Google Scholar 

  186. Blask, D. E. et al. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res. 65, 11174–11184 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Schernhammer, E. S. et al. Rotating night shifts and risk of breast cancer in women participating in the nurses' health study. J. Natl Cancer Inst. 93, 1563–1568 (2001).

    Article  CAS  PubMed  Google Scholar 

  188. Schernhammer, E. S. et al. Night-shift work and risk of colorectal cancer in the nurses' health study. J. Natl Cancer Inst. 95, 825–828 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate this article in memory of Neil Alden Armstrong, with grateful appreciation and respect for his dedication and commitment to the exploration of space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanne L. Becker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Nuclear force

The force holding together subatomic particles of the nucleus.

Electromagnetic force

The force associated with electric and magnetic fields.

Microgravity

Conditions of reduced gravity experienced specifically in the space environment.

Standard gravity

The natural force of attraction exerted by Earth on objects at or near its surface.

Low Earth orbit

A circular orbit extending to approximately 1,200 miles above the Earth's surface.

Gravity-dependent convection

Movement of fluid or gas affected by gravity.

Hydrodynamic shear

Stress arising in a fluid that is a function of the fluid velocity gradient and viscosity.

Sedimentation

The settling of solid material from a state of suspension.

Discoid

Disc-like shape of normal red blood cells.

Echinocytic

Abnormally shaped red blood cells exhibiting blunt spicule protrusions.

Spheroids

Three-dimensional multicellular clusters or aggregates.

Turbulence

Disordered motion in a fluid yielding disrupted and irregular flow.

Laminar flow

Fluid flow occurring in layers.

Clinostat

A horizontally rotating culture device.

Clinorotation

Rotation of a culture vessel about its horizontal axis.

Membrane oxygenation

Oxygen delivered to cells in a culture vessel via a gas-permeable membrane.

Gravitational vector

Unidirectional downward pull of the force of gravity.

Warm bore superconductive magnet

A strong field (100 T per m gradient) magnet, similar to a high-field nuclear magnetic resonance spectroscopic magnet.

Histogenesis

Growth and differentiation of cells to form specialized tissue.

Tensegrity

Also known as tensional integrity. A biomechanical principle of continuous tension or prestress that imparts stability and integrity in a spatial system and that facilitates responsiveness to environmental cues.

Prestress

Resting tension that provides structural integrity.

Oral mucositis

Inflammation and ulceration occurring in the mouth, often experienced as a side effect of receiving cancer chemotherapy.

Myeloablative treatment

The use of antitumour therapy to eliminate cancer in the bone marrow.

Light therapy

Administration of varying wavelengths of light to affect a biological outcome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, J., Souza, G. Using space-based investigations to inform cancer research on Earth. Nat Rev Cancer 13, 315–327 (2013). https://doi.org/10.1038/nrc3507

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3507

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer