Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetic architecture of multiple myeloma

Key Points

  • The initiation of myeloma is mediated by the interaction of environmental factors and inherited genetic events that, when combined with the normal physiological processes that are necessary to generate antibody diversity, result in genetic changes that lead to the immortalization of a myeloma-propagating cell. Chief among these events are chromosomal translocations and hyperdiploidy.

  • Based on their distribution in most clonal cells, chromosomal translocations that are generated by aberrant class switch recombination have been suggested to be initiating events occurring early in the disease process. As a result of these translocations, oncogenes can be placed under the control of the strong enhancers of the immunoglobulin gene loci, leading to their increased expression.

  • The interaction of normal plasma cells with their supportive microenvironment is crucial for plasma cell longevity. A characteristic feature of myeloma cells is the requirement for an intimate relationship with the bone marrow microenvironment, where plasma cells are nurtured in specialized niches that facilitate the growth of the myeloma clone. Derangement of these interactions is important in the immortalization of a myeloma-propagating cell.

  • The basic premise underlying the progression of myeloma is that multiple mutations in different pathways collaborate to deregulate the intrinsic biology of the plasma cell, changing it in ways that lead to the features of myeloma. The immortalized cell then acquires additional genetic hits over time, thus leading to the clinically recognized features of myeloma and eventually to the development of treatment resistance and an ability to grow in the peripheral blood as a leukaemic phase.

  • It is becoming increasingly clear that the molecular events acquired during myeloma progression are not acquired in a linear fashion but instead through branching, nonlinear pathways, similar to the mechanism suggested by Darwin to explain the evolution of species. Therefore, a further level of the genetic complexity of myeloma is based on intraclonal heterogeneity at the level of a myeloma-propagating cell.

  • The genetic lesions that lead to myeloma are best considered within the categories of inherited variation, translocations, copy number abnormalities, mutations, and methylation and miRNA abnormalities. The net biological impact of such events is to modify the behaviour of the myeloma-propagating cell, resulting in the key molecular hallmarks of myeloma.

  • The treatments that are used for myeloma include steroids, alkylating agents, the immunomodulatory drugs thalidomide and lenalidomide, proteasome inhibitors and autologous stem cell transplantation. Current therapeutic aims are to induce and maintain long-term remission. Future approaches based on personalized medicine strategies will involve targeted therapies combined with molecular-diagnostic strategies.

  • The presence of intraclonal heterogeneity has important effects on the clinical application of both standard and targeted treatment strategies but provides a model system within which to assess their optimum use.

Abstract

Based on the clinical features of myeloma and related malignancies of plasma cells, it has been possible to generate a model system of myeloma progression from a normal plasma cell through smouldering myeloma to myeloma and then plasma cell leukaemia. Using this model system we can study at which points the genetic alterations identified through whole-tumour molecular analyses function in the initiation and progression of myeloma. Further genetic complexity, such as intraclonal heterogeneity, and insights into the molecular evolution and intraclonal dynamics in this model system are crucial to our understandings of tumour progression, treatment resistance and the use of currently available and future treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The B cell immune response.
Figure 2: Initiation and progression of myeloma.
Figure 3: Pathways to myeloma.
Figure 4: A cellular wiring diagram of a typical myeloma cell.
Figure 5: The key genetic changes in the myeloma genome.
Figure 6: The impact of treatment on intraclonal diversity.

Similar content being viewed by others

References

  1. Greipp, P. R. et al. International staging system for multiple myeloma. J. Clin. Oncol. 23, 3412–3420 (2005).

    Article  PubMed  Google Scholar 

  2. Kyle, R. A. et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 78, 21–33 (2003).

    Article  PubMed  Google Scholar 

  3. Kyle, R. A. et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 356, 2582–2590 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Akiyama, M. et al. Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res. 62, 3876–3882 (2002).

    CAS  PubMed  Google Scholar 

  5. Chauhan, D. et al. Blockade of ubiquitin-conjugating enzyme CDC34 enhances anti-myeloma activity of Bortezomib/Proteasome inhibitor PS-341. Oncogene 23, 3597–3602 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A. & Dalton, W. S. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93, 1658–1667 (1999).

    CAS  PubMed  Google Scholar 

  7. Hideshima, T. et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107, 4053–4062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitsiades, C. S., Mitsiades, N. S., Munshi, N. C., Richardson, P. G. & Anderson, K. C. The role of the bone microenvironment in the pathophysiology and therapeutic management of multiple myeloma: interplay of growth factors, their receptors and stromal interactions. Eur. J. Cancer 42, 1564–1573 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Palumbo, A. & Anderson, K. Multiple myeloma. N. Engl. J. Med. 364, 1046–1060 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011). The first report of a myeloma genome, which demonstrated the complex and varied abnormalities that are seen in myeloma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gonzalez, D. et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood 110, 3112–3121 (2007). A comprehensive review of normal antibody generation and plasma cell development, detailing the changes that are seen in MGUS and myeloma. The importance of SHM and CSR is highlighted.

    Article  CAS  PubMed  Google Scholar 

  12. Bergsagel, P. L. & Kuehl, W. M. Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol. Rev. 194, 96–104 (2003). A review explaining the biological significance of chromosome 14 translocations in myeloma.

    Article  CAS  PubMed  Google Scholar 

  13. Hakim, O. et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 7 Feb 2012 (doi:10.1038/nature10909).

  14. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Iwakoshi, N. N. et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nature Immunol. 4, 321–329 (2003).

    Article  CAS  Google Scholar 

  16. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Davenport, E. L., Morgan, G. J. & Davies, F. E. Untangling the unfolded protein response. Cell Cycle 7, 865–869 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Carrasco, D. R. et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell 11, 349–360 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bagratuni, T. et al. XBP1s levels are implicated in the biology and outcome of myeloma mediating different clinical outcomes to thalidomide-based treatments. Blood 116, 250–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Oracki, S. A., Walker, J. A., Hibbs, M. L., Corcoran, L. M. & Tarlinton, D. M. Plasma cell development and survival. Immunol. Rev. 237, 140–159 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Radbruch, A. et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nature Rev. Immunol. 6, 741–750 (2006).

    Article  CAS  Google Scholar 

  22. Chiecchio, L. et al. Timing of acquisition of deletion 13 in plasma cell dyscrasias is dependent on genetic context. Haematologica 94, 1708–1713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carrasco, D. R. et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 9, 313–325 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Walker, B. A. et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 116, e56–e65 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Lopez-Corral, L. et al. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells. Clin. Cancer Res. 17, 1692–1700 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Cremer, F. W. et al. High incidence and intraclonal heterogeneity of chromosome 11 aberrations in patients with newly diagnosed multiple myeloma detected by multiprobe interphase FISH. Cancer Genet. Cytogenet. 161, 116–124 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Walker, B. A. et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms and genes important in the pathogenesis of multiple myeloma. Blood 108, 1733–1743 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469, 356–361 (2011). An important paper discussing the role of intraclonal variation in tumour biology.

    Article  CAS  PubMed  Google Scholar 

  29. Sahota, S. S., Leo, R., Hamblin, T. J. & Stevenson, F. K. Ig VH gene mutational patterns indicate different tumor cell status in human myeloma and monoclonal gammopathy of undetermined significance. Blood 87, 746–755 (1996).

    CAS  PubMed  Google Scholar 

  30. Ross, F. M. et al. Age has a profound effect on the incidence and significance of chromosome abnormalities in myeloma. Leukemia 19, 1634–1642 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Akiyama, M. et al. Effects of oligonucleotide N3′→P5′ thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res. 63, 6187–6194 (2003).

    CAS  PubMed  Google Scholar 

  32. Shammas, M. A. et al. Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin. Cancer Res. 10, 770–776 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Brennan, S. K. et al. Telomerase inhib ition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms. PLoS ONE 5, e12487 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. McKenna, R. W. et al. Plasma cell neoplasms. In World Health Organization Classification of Tumors of Hematopoietic and Lymphoid Tissues (eds Swerdlow, S. H. et al.) 200–213 (IARC Press, 2008).

    Google Scholar 

  35. Anderson, K. C. New insights into therapeutic targets in myeloma. ASH Education Book 2011, 184–190 (2011).

    Google Scholar 

  36. Walker, B. A. et al. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood 117, 553–562 (2011). The first report of global methylation changes from MGUS to PCL and within the myeloma cytogenetic subgroups.

    Article  CAS  PubMed  Google Scholar 

  37. Rasmussen, T. et al. Identification of translocation products but not K-RAS mutations in memory B cells from multiple myeloma patients. Haematologica 95, 1730–1737 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Altieri, A., Chen, B., Bermejo, J. L., Castro, F. & Hemminki, K. Familial risks and temporal incidence trends of multiple myeloma. Eur. J. Cancer 42, 1661–1670 (2006).

    Article  PubMed  Google Scholar 

  39. Broderick, P. et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nature Genet. 44, 58–61 (2012). The first GWAS to identify myeloma disease susceptibility loci.

    Article  CAS  Google Scholar 

  40. Bergsagel, P. L. et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 106, 296–303 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chesi, M. et al. Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 88, 674–681 (1996).

    CAS  PubMed  Google Scholar 

  42. Shaughnessy, J. Jr et al. Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 98, 217–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Hurt, E. M. et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer Cell 5, 191–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Shou, Y. et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc. Natl Acad. Sci. USA 97, 228–233 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Avet-Loiseau, H. et al. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 98, 3082–3086 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Chesi, M. et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13, 167–180 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carrasco, R. et al. Comprehensive genome-wide profile of regional gains and losses in multiple myeloma using array-CGH: The 1q21 amplification and potential role of the BCL-9 gene in multiple myeloma pathogenesis. Blood (ASH Annual Meeting Abstracts) 104, 785 (2004).

    Google Scholar 

  49. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007). References 47 and 49 highlight the importance of NF-κB signalling in myeloma and the role that deregulation of the pathway has in myeloma pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dickens, N. J. et al. Homozygous deletion mapping in myeloma samples identifies genes and an expression signature relevant to pathogenesis and outcome. Clin. Cancer Res. 16, 1856–1864 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boyd, K. D. et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin. Cancer Res. 17, 7776–7784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jenner, M. W. et al. Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood 110, 3291–3300 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Leone, P. E. et al. Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin. Cancer Res. 14, 6033–6041 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gonzalez-Paz, N. et al. Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications. Blood 109, 1228–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Dib, A., Barlogie, B., Shaughnessy, J. D. Jr & Kuehl, W. M. Methylation and expression of the p16INK4A tumor suppressor gene in multiple myeloma. Blood 109, 1337–1338 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Davis, R. E., Brown, K. D., Siebenlist, U. & Staudt, L. M. Constitutive nuclear factor-κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 194, 1861–1874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Onodera, N., McCabe, N. R. & Rubin, C. M. Formation of a hyperdiploid karyotype in childhood acute lymphoblastic leukemia. Blood 80, 203–208 (1992).

    CAS  PubMed  Google Scholar 

  58. Shaughnessy, J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology. 10 (Suppl. 1), 117–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, W. et al. The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465, 473–477 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Tiacci, E. et al. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364, 2305–2315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aronson, L. I. et al. Autophagy is a key myeloma survival pathway that can be manipulated therapeutically to enhance apoptosis. ASH Annual Meeting Abstracts 116, 4083 (2010).

    Google Scholar 

  63. Boyd, K. D. et al. High expression levels of the mammalian target of rapamycin inhibitor DEPTOR are predictive of response to thalidomide in myeloma. Leuk. Lymphoma 51, 2126–2129 (2010).

    Article  PubMed  Google Scholar 

  64. Fazzari, M. J. & Greally, J. M. Epigenomics: beyond CpG islands. Nature Rev. Genet. 5, 446–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers. Nature Rev. Cancer 10, 457–469 (2010).

    Article  CAS  Google Scholar 

  66. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nature Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Nimura, K. et al. A histone H3 lysine 36 trimethyltransferase links Nkx2–5 to Wolf-Hirschhorn syndrome. Nature 460, 287–291 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, J. Y. et al. Multiple-myeloma-related WHSC1/MMSET isoform RE-IIBP is a histone methyltransferase with transcriptional repression activity. Mol. Cell Biol. 28, 2023–2034 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Marango, J. et al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 111, 3145–3154 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kuo, A. J. et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Martinez-Garcia, E. et al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood 117, 211–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brito, J. L. et al. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells. Haematologica 94, 78–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Pei, H. et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470, 124–128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van Haaften, G. et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genet. 41, 521–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Avet-Loiseau, H. et al. Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J. Clin. Oncol. 28, 4630–4634 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Lode, L. et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica 95, 1973–1976 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Boyd, K. D. et al. The clinical impact and molecular biology of del(17p) in multiple myeloma treated with conventional or thalidomide-based therapy. Genes Chromosomes Cancer 50, 765–774 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Pichiorri, F. et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc. Natl Acad. Sci. USA 105, 12885–12890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pichiorri, F. et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18, 367–381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zenz, T. et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood 114, 2589–2597 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Benetatos, L. & Vartholomatos, G. Deregulated microRNAs in multiple myeloma. Cancer 118, 878–887 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Chang, T. C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet. 40, 43–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Boyd, K. D. et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia 26, 349–355 (2012). Evidence is presented highlighting the importance of combining cytogenetic abnormalities with other disease markers to accurately predict therapeutic response.

    Article  CAS  PubMed  Google Scholar 

  84. Ross, F. M. et al. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica 95, 1221–1225 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chauhan, D. et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB. Blood 87, 1104–1112 (1996).

    CAS  PubMed  Google Scholar 

  86. Moreaux, J. et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103, 3148–3157 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Neri, P. et al. Integrin β7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood 117, 6202–6213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Annunziata, C. M. et al. A mechanistic rationale for MEK inhibitor therapy in myeloma based on blockade of MAF oncogene expression. Blood 117, 2396–2404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu, P. et al. A gene expression-based predictor for myeloma patients at high risk of developing bone disease on bisphosphonate treatment. Clin. Cancer Res. 17, 6347–6355 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Bezieau, S. et al. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum. Mutat. 18, 212–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Braga, V. M., Betson, M., Li, X. & Lamarche-Vane, N. Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell-cell adhesion in normal human keratinocytes. Mol. Biol. Cell 11, 3703–3721 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Allan, V. J. Cytoplasmic dynein. Biochem. Soc. Trans. 39, 1169–1178 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Morgan, G. J. et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 376, 1989–1999 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Tian, E. et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med. 349, 2483–2494 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Vallet, S. et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc. Natl Acad. Sci. USA 107, 5124–5129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Avet-Loiseau, H. et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 109, 3489–3495 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Avet-Loiseau, H. et al. Prognostic significance of copy-number alterations in multiple myeloma. J. Clin. Oncol. 27, 4585–4590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Morgan, G. J. et al. Cyclophosphamide, thalidomide, and dexamethasone (CTD) as initial therapy for patients with multiple myeloma unsuitable for autologous transplantation. Blood 118, 1231–1238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Paiva, B. et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood 119, 687–691 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Munshi, N. C. et al. Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood 117, 4696–4700 (2011). An international consensus statement discussing the clinical impact of cytogenetic abnormalities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Broyl, A. et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood 116, 2543–2553 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Zhan, F. et al. Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood 101, 1128–1140 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Nair, B. et al. Gene expression profiling of plasma cells at myeloma relapse from tandem transplantation trial Total Therapy 2 predicts subsequent survival. Blood 113, 6572–6575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chng, W. J., Glebov, O., Bergsagel, P. L. & Kuehl, W. M. Genetic events in the pathogenesis of multiple myeloma. Best Pract. Res. Clin. Haematol. 20, 571–596 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kassambara, A. et al. Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma. Haematologica 18 Nov 2011 (doi:10.3324/haematol.2011.046821).

  106. Zhan, F. et al. The molecular classification of multiple myeloma. Blood 108, 2020–2028 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shaughnessy, J. D. Jr et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 109, 2276–2284 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Morgan, G. J. et al. The role of maintenance thalidomide therapy in multiple myeloma: MRC Myeloma IX results and meta-analysis. Blood 119, 7–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Neben, K. et al. Administration of bortezomib before and after autologous stem-cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood 119, 940–948 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Stewart, A. K. Whole genome sequencing in high-risk myeloma. 13th Annual International Myeloma Workshop 2011 [online] (2011).

    Google Scholar 

  111. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rettig, M. B. et al. VH gene usage in multiple myeloma: complete absence of the VH4.21 (VH4-34) gene. Blood 87, 2846–2852 (1996).

  113. Nobuyoshi, M. et al. Increased expression of the c-myc gene may be related to the aggressive transformation of human myeloma cells. Br. J. Haematol. 77, 523–528 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Perez-Rosado, A. et al. BCL6 represses NFκB activity in diffuse large B-cell lymphomas. J. Pathol. 214, 498–507 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Myeloma UK for programme funding. F.E.D. is a Cancer Research UK Senior Cancer Fellow. In addition, we would also like to thank M. Greaves, L. Melchor, M. Kaiser and D. Gonzalez for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth J. Morgan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Paraproteinaemias

The clinical diseases that produce a paraprotein (immunoglobulin from a single clone that is present at high levels in the serum) and include myeloma, monoclonal gammopathy of undetermined significance (MGUS) and Waldenstrom's macroglobulinaemia (WM).

Plasma cell

A terminally differentiated quiescent B cell that secretes large amounts of antibodies.

Germinal centre

The site within a lymph node where B cells undergo affinity maturation of their antibody through somatic hypermutation (SHM). During this process the B cells rapidly proliferate and differentiate and are selected for increasingly specific antibodies against the antigen.

Class switch recombination

(CSR). A region-specific deletional recombination reaction that replaces one switch region with another. This allows the production of different immunoglobulin isotypes.

Immunoglobulin isotypes

Immunoglobulin (Ig) isotypes are defined by the heavy and light chain locus constant regions used by the Ig. These constant regions are encoded within the IGH@ locus (heavy chain) on chromosome 14 or the IGK@ and IGL@ loci (light chain) on chromosomes 2 and 22, respectively. There are nine heavy chain isotypes: IgM, IgD, IgE, IgA1, IgA2, IgG1, IgG2, IgG3 and IgG4. Two light chain isotypes exist, kappa and lambda.

Centroblast

A lymphocyte that has a large, non-cleaved nucleus. B cells that are proliferating and undergoing affinity maturation in response to stimulus, within the germinal centre, are termed centroblasts. These cells mature to centrocytes within the germinal centre before they leave to become plasmablasts.

Unfolded protein response

(UPR). This is a cellular stress pathway that is activated in response to an accumulation of unfolded or misfolded proteins. In myeloma plasma cells this pathway is crucial for dealing with the large quantities of immunoglobulin (or paraprotein) that are produced by the cells. Disruption of this pathway in plasma cells can lead to apoptosis.

Serological memory

The presence of immunoglobulin in the serum, usually from mature B cells that have undergone somatic hypermutation and class switch recombination in a germinal centre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, G., Walker, B. & Davies, F. The genetic architecture of multiple myeloma. Nat Rev Cancer 12, 335–348 (2012). https://doi.org/10.1038/nrc3257

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3257

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer