Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells

Abstract

Cancers of the breast and other tissues arise from aberrant decision-making by cells regarding their survival or death, proliferation or quiescence, damage repair or bypass. These decisions are made by molecular signalling networks that process information from outside and from within the breast cancer cell and initiate responses that determine the cell's survival and reproduction. Because the molecular logic of these circuits is difficult to comprehend by intuitive reasoning alone, we present some preliminary mathematical models of the basic decision circuits in breast cancer cells that may aid our understanding of their susceptibility or resistance to endocrine therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The oestrogen receptor signalling network in breast epithelial cells.
Figure 2: Bistable switch controlling the G1-to-S phase transition in mammalian cells.
Figure 3: Bistable switch controlling apoptosis in mammalian cells.
Figure 4: The interplay between autophagy and apoptosis.
Figure 5: The unfolded protein response in mammalian cells.
Figure 6: Crosstalk between oestrogen receptor and epidermal growth factor signalling pathways.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, Robert A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Hornberg, J. J., Bruggeman, F. J., Westerhoff, H. V. & Lankelma, J. Cancer: a systems biology disease. Biosystems 83, 81–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Faratian, D., Moodie, S. L., Harrison, D. J. & Goryanin, I. Dynamic computational modeling in the search for better breast cancer drug therapy. Pharmacogenomics 8, 1757–1761 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kreeger, P. K. & Lauffenburger, D. A. Cancer systems biology: a network modeling perspective. Carcinogenesis 31, 2–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Novak, B., Pataki, Z., Ciliberto, A. & Tyson, J. J. Mathematical model of the cell division cycle of fission yeast. Chaos 11, 277–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, K. C. et al. Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alberghina, L., Coccetti, P. & Orlandi, I. Systems biology of the cell cycle of Saccharomyces cerevisiae: from network mining to system-level properties. Biotechnol. Adv. 27, 960–978 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Barik, D., Baumann, W. T., Paul, M. R., Novak, B. & Tyson, J. J. A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol. Syst. Biol. 6, 405 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bray, D. Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Shiraishi, T., Matsuyama, S. & Kitano, H. Large-scale analysis of network bistability for human cancers. PLoS Comput. Biol. 6, e1000851 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Rao, C. V. & Arkin, A. P. Control motifs for intracellular regulatory networks. Annu. Rev. Biomed. Eng. 3, 391–419 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Wolf, D. M. & Arkin, A. P. Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6, 125–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Del Vecchio, D., Ninfa, A. J. & Sontag, E. D. Modular cell biology: retroactivity and insulation. Mol. Syst. Biol. 4, 161 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  PubMed  Google Scholar 

  16. Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351, 1451–1467 (1998).

  17. Early Breast Cancer Trialists' Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet 352, 930–942 (1998).

  18. Clarke, R., Leonessa, F., Welch, J. N. & Skaar, T. C. Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol. Rev. 53, 25–71 (2001).

    CAS  PubMed  Google Scholar 

  19. Clarke, R. et al. Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells. J. Steroid Biochem. Mol. Biol. 114, 8–20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gu, Z. et al. Association of interferon regulatory factor-1, nucleophosmin, nuclear factor-κB, and cyclic AMP response element binding with acquired resistance to Faslodex (ICI 182,780). Cancer Res. 62, 3428–3437 (2002).

    CAS  PubMed  Google Scholar 

  21. Riggins, R. B., Zwart, A., Nehra, R. & Clarke, R. The nuclear factor κB inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol. Cancer Ther. 4, 33–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, Y. et al. Enhanced NF κB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer. BMC Cancer 7, 59 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nehra, R. et al. BCL2 and CASP8 regulation by NF-κB differentially affect mitochondrial function and cell fate in antiestrogen-sensitive and -resistant breast cancer cells. FASEB J. 24, 2040–2055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bouker, K. B. et al. Interferon regulatory factor-1 mediates the proapoptotic but not cell cycle arrest effects of the steroidal antiestrogen ICI 182,780 (Faslodex, fulvestrant). Cancer Res. 64, 4030–4039 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Bowie, M. L. et al. Interferon-regulatory factor-1 is critical for tamoxifen-mediated apoptosis in human mammary epithelial cells. Oncogene 23, 8743–8755 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Bouker, K. B. et al. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis 26, 1527–1535 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Gomez, B. P. et al. Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 21, 4013–4027 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Davies, M. P. et al. Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int. J. Cancer 123, 85–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Tyson, J. J., Chen, K. & Novak, B. Network dynamics and cell physiology. Nature Rev. Mol. Cell Biol. 2, 908–916 (2001).

    Article  CAS  Google Scholar 

  30. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Novak, B. & Tyson, J. J. A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230, 563–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Gerard, C. & Goldbeter, A. Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle. Proc. Natl Acad. Sci. USA 106, 21643–21648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bartek, J., Bartkova, J. & Lukas, J. The retinoblastoma protein pathway and the restriction point. Curr. Opin. Cell Biol. 8, 805–814 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Herwig, S. & Strauss, M. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis. Eur. J. Biochem. 246, 581–601 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Seville, L. L., Shah, N., Westwell, A. D. & Chan, W. C. Modulation of pRB/E2F functions in the regulation of cell cycle and in cancer. Curr. Cancer Drug Targets 5, 159–170 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Cavanaugh, A. H. et al. Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 374, 177–180 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. White, R. J., Trouche, D., Martin, K., Jackson, S. P. & Kouzarides, T. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382, 88–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. White, R. J. RNA polymerases I and III, growth control and cancer. Nature Rev. Mol. Cell Biol. 6, 69–78 (2005).

    Article  CAS  Google Scholar 

  39. Goodfellow, S. J. & White, R. J. Regulation of RNA polymerase III transcription during mammalian cell growth. Cell Cycle 6, 2323–2326 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Sherr, C. J. D-type cyclins. Trends Biochem. Sci. 20, 187–190 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Yao, G., Lee, T. J., Mori, S., Nevins, J. R. & You, L. A bistable Rb-E2F switch underlies the restriction point. Nature Cell Biol. 10, 476–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, T. J., Yao, G., Bennett, D. C., Nevins, J. R. & You, L. Stochastic E2F activation and reconciliation of phenomenological cell-cycle models. PLoS Biol. 8, e1000488 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Novak, B., Tyson, J. J., Gyorffy, B. & Csikasz-Nagy, A. Irreversible cell-cycle transitions are due to systems-level feedback. Nature Cell Biol. 9, 724–728 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Doisneau-Sixou, S. F. et al. Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr. Relat. Cancer 10, 179–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Yao, G., Tan, C., West, M., Nevins, J. R. & You, L. Origin of bistability underlying mammalian cell cycle entry. Mol. Syst. Biol. 7, 485 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Arteaga, C. L., Koli, K. M., Dugger, T. C. & Clarke, R. Reversal of tamoxifen resistance of human breast carcinomas in vivo by neutralizing antibodies to transforming growth factor-β. J. Natl Cancer Inst. 91, 46–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Brandt, S., Kopp, A., Grage, B. & Knabbe, C. Effects of tamoxifen on transcriptional level of transforming growth factor β (TGF-β) isoforms 1 and 2 in tumor tissue during primary treatment of patients with breast cancer. Anticancer Res. 23, 223–229 (2003).

    CAS  PubMed  Google Scholar 

  48. Rudas, M. et al. Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy. Clin. Cancer Res. 14, 1767–1774 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Foster, J. S., Fernando, R. I., Ishida, N., Nakayama, K. I. & Wimalasena, J. Estrogens down-regulate p27Kip1 in breast cancer cells through Skp2 and through nuclear export mediated by the ERK pathway. J. Biol. Chem. 278, 41355–41366 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Ren, Y. et al. Dual effects of TGF-β on ERα-mediated estrogenic transcriptional activity in breast cancer. Mol. Cancer 8, 111 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Albeck, J. G., Burke, J. M., Spencer, S. L., Lauffenburger, D. A. & Sorger, P. K. Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol. 6, e299 (2008).

    Article  PubMed Central  CAS  Google Scholar 

  52. Zhang, T., Brazhnik, P. & Tyson, J. J. Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle 6, 85–94 (2007).

    Article  PubMed  Google Scholar 

  53. Chen, C. et al. Modeling of the role of a Bax-activation switch in the mitochondrial apoptosis decision. Biophys. J. 92, 4304–4315 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cui, J., Chen, C., Lu, H., Sun, T. & Shen, P. Two independent positive feedbacks and bistability in the Bcl-2 apoptotic switch. PLoS ONE 3, e1469 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhang, T., Brazhnik, P. & Tyson, J. J. Computational analysis of dynamical responses to the intrinsic pathway of programmed cell death. Biophys. J. 97, 415–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, X. P., Liu, F., Cheng, Z. & Wang, W. Cell fate decision mediated by p53 pulses. Proc. Natl Acad. Sci. USA 106, 12245–12250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, X. P., Liu, F. & Wang, W. Coordination between cell cycle progression and cell fate decision by the p53 and E2F1 pathways in response to DNA damage. J. Biol. Chem. 285, 31571–31580 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eissing, T. et al. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem. 279, 36892–36897 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Legewie, S., Bluthgen, N. & Herzel, H. Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput. Biol. 2, e120 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Puszynski, K., Hat, B. & Lipniacki, T. Oscillations and bistability in the stochastic model of p53 regulation. J. Theor. Biol. 254, 452–465 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Shoemaker, J. E. & Doyle, F. J. Identifying fragilities in biochemical networks: robust performance analysis of Fas signaling-induced apoptosis. Biophys. J. 95, 2610–2623 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sun, T., Lin, X., Wei, Y., Xu, Y. & Shen, P. Evaluating bistability of Bax activation switch. FEBS Lett. 584, 954–960 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Cameron, D. A. et al. Effective tamoxifen therapy of breast cancer involves both antiproliferative and pro-apoptotic changes. Eur. J. Cancer 36, 845–851 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Crawford, A. C., Riggins, R. B., Shajahan, A. N., Zwart, A. & Clarke, R. Co-inhibition of BCL-W and BCL2 restores antiestrogen sensitivity through BECN1 and promotes an autophagy-associated necrosis. PLoS ONE 5, e8604 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Pratt, M. A. et al. Estrogen withdrawal-induced NF-κB activity and Bcl-3 expression in breast cancer cells: roles in growth and hormone independence. Mol. Cell. Biol. 23, 6887–6900 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Toettcher, J. E. et al. Distinct mechanisms act in concert to mediate cell cycle arrest. Proc. Natl Acad. Sci. USA 106, 785–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Batchelor, E., Loewer, A. & Lahav, G. The ups and downs of p53: understanding protein dynamics in single cells. Nature Rev. Cancer 9, 371–377 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wellen, K. E. & Thompson, C. B. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell 40, 323–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  Google Scholar 

  72. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  Google Scholar 

  74. Trusina, A., Papa, F. R. & Tang, C. Rationalizing translation attenuation in the network architecture of the unfolded protein response. Proc. Natl Acad. Sci. USA 105, 20280–20285 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Verfaillie, T., Salazar, M., Velasco, G. & Agostinis, P. Linking ER stress to autophagy: potential implications for cancer therapy. Int. J. Cell Biol. 2010, 930509 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8, e1000415 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Clarke, R. et al. Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Horm. Mol. Biol. Clin. Investig. 5, 35–44 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Qin, C. et al. Estrogen up-regulation of p53 gene expression in MCF-7 breast cancer cells is mediated by calmodulin kinase IV-dependent activation of a nuclear factor κB/CCAAT-binding transcription factor-1 complex. Mol. Endocrinol. 16, 1793–1809 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Ak, P. & Levine, A. J. p53 and NF-κB: different strategies for responding to stress lead to a functional antagonism. FASEB J. 24, 3643–3652 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Calzone, L. et al. Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput. Biol. 6, e1000702 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Nicholson, R. I., Staka, C., Boyns, F., Hutcheson, I. R. & Gee, J. M. Growth factor-driven mechanisms associated with resistance to estrogen deprivation in breast cancer: new opportunities for therapy. Endocr. Relat. Cancer 11, 623–641 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Xia, W. et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc. Natl Acad. Sci. USA 103, 7795–7800 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gee, J. M. et al. Deciphering antihormone-induced compensatory mechanisms in breast cancer and their therapeutic implications. Endocr. Relat. Cancer 13, S77–S88 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Nicholson, R. I. et al. Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev. Endocr. Metab. Disord. 8, 241–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Massarweh, S. & Schiff, R. Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin. Cancer Res. 13, 1950–1954 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Arpino, G., Wiechmann, L., Osborne, C. K. & Schiff, R. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr. Rev. 29, 217–233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Miller, D. L. et al. Emergence of MCF-7 cells overexpressing a transfected epidermal growth factor receptor (EGFR) under estrogen-depleted conditions: evidence for a role of EGFR in breast cancer growth and progression. Cell Growth Differ. 5, 1263–1274 (1994).

    CAS  PubMed  Google Scholar 

  88. Liu, Y., el-Ashry, D., Chen, D., Ding, I. Y. & Kern, F. G. MCF-7 breast cancer cells overexpressing transfected c-erbB-2 have an in vitro growth advantage in estrogen-depleted conditions and reduced estrogen-dependence and tamoxifen-sensitivity in vivo. Breast Cancer Res. Treat. 34, 97–117 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Sonne-Hansen, K. et al. Breast cancer cells can switch between estrogen receptor α and ErbB signaling and combined treatment against both signaling pathways postpones development of resistance. Breast Cancer Res. Treat. 121, 601–613 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Aldridge, B. B., Burke, J. M., Lauffenburger, D. A. & Sorger, P. K. Physicochemical modelling of cell signalling pathways. Nature Cell Biol. 8, 1195–1203 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Clarke, R. et al. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nature Rev. Cancer 8, 37–49 (2008).

    Article  CAS  Google Scholar 

  92. Batchelor, E., Mock, C. S., Bhan, I., Loewer, A. & Lahav, G. Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. Mol. Cell 30, 277–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sahin, O. et al. Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst. Biol. 3, 1 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bagheri, N., Shiina, M., Lauffenburger, D. A. & Korn, W. M. A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition. PLoS Comput. Biol. 7, e1001085 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pujana, M. A. et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nature Genet. 39, 1338–1349 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, B. et al. Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics 25, 526–532 (2009).

    Article  PubMed  CAS  Google Scholar 

  97. Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nature Rev. Genet. 12, 56–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Anderson, A. R., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Anderson, A. R. & Quaranta, V. Integrative mathematical oncology. Nature Rev. Cancer 8, 227–234 (2008).

    Article  CAS  Google Scholar 

  100. Byrne, H. M. Dissecting cancer through mathematics: from the cell to the animal model. Nature Rev. Cancer 10, 221–230 (2010).

    Article  CAS  Google Scholar 

  101. Owen, M. R., Alarcon, T., Maini, P. K. & Byrne, H. M. Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58, 689–721 (2009).

    Article  PubMed  Google Scholar 

  102. van Leeuwen, I. M. et al. An integrative computational model for intestinal tissue renewal. Cell Prolif. 42, 617–636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thomenius, M. J. & Distelhorst, C. W. Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J. Cell Sci. 116, 4493–4499 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Zalckvar, E., Berissi, H., Eisenstein, M. & Kimchi, A. Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5, 720–722 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Petrovski, G. et al. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Differ. 14, 1117–1128 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Rong, Y. & Distelhorst, C. W. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu. Rev. Physiol. 70, 73–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Djavaheri-Mergny, M., Maiuri, M. C. & Kroemer, G. Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29, 1717–1719 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. DuRose, J. B., Tam, A. B. & Niwa, M. Intrinsic capacities of molecular sensors of the unfolded protein response to sense alternate forms of endoplasmic reticulum stress. Mol. Biol. Cell 17, 3095–3107 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Li, H., Korennykh, A. V., Behrman, S. L. & Walter, P. Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc. Natl Acad. Sci. USA 107, 16113–16118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health grants U54-CA149147 (to R.C.) and R01-GM078989 (to J.J.T. and W.B.), by US National Science Foundation grants DMS-0342283 (to J.J.T. and P. Brazhnik) and DBI-0904340 (to A.V.), and by fellowships to C.C. and I.T. provided by the Virginia Polytechnic Institute and State University graduate program in Genetics, Bioinformatics and Computational Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Tyson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Supplementary information

Supplementary information S1 (text)

RB-E2F-CYCE Bistable Switch (PDF 352 kb)

Supplementary information S2 (text)

BH3-BCL-BAX Bistable Switch (PDF 320 kb)

Supplementary information S3 (text)

Beclin-1 Rheostat (PDF 476 kb)

Supplementary information S4 (text)

Unfolded Protein Response in Mammalian Cells (PDF 378 kb)

Supplementary information S5 (text)

ER-GFR Survival Signaling Switch (PDF 746 kb)

Glossary

Autophagy

Degradation of a cell's own components, using its lysosomal machinery, to remove damaged organelles and/or to provide energy and raw materials for adaptation and survival under stressful conditions.

Bistable switch

A regulatory network that can persist, under identical external conditions, in either of two stable states ('ON' or 'OFF') depending on its recent history.

Crosstalk

Interactions among modules that alter the behaviour of the modules in isolation.

Dynamic behaviour

The characteristic change over time of a molecular regulatory network in response to a specific pattern of input signals.

Modules

A set of molecular interactions that accomplishes a specific task in a cell, such as committing a cell to a new round of DNA replication.

Molecular interaction graph

A representation of a set of biochemical reactions involving co-regulated genes and proteins; for example, a signal transduction pathway or a transcription factor network. Also referred to as a 'wiring diagram'.

Plasticity

The ability of a regulatory network, in the face of interference or damage, to adapt and maintain something akin to its normal function.

Rheostat

A variable resistor, used to provide continuous control over the current through a circuit (for example, the dimmer knob on a light fixture).

Signal–response curve

The functional dependence of the output of a molecular regulatory network (for example, the activity of a transcription factor) on changing values of its input (for example, concentration of a growth factor in the extracellular medium).

Stochastic fluctuations

Random variations in the numbers of molecules of mRNAs and proteins due to the unpredictable nature of chemical reactions at the molecular level.

Unfolded protein response

The cellular response to the accumulation of misfolded proteins in the endoplasmic reticulum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyson, J., Baumann, W., Chen, C. et al. Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 11, 523–532 (2011). https://doi.org/10.1038/nrc3081

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3081

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer