Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The physics of cancer: the role of physical interactions and mechanical forces in metastasis

Abstract

Metastasis is a complex, multistep process responsible for >90% of cancer-related deaths. In addition to genetic and external environmental factors, the physical interactions of cancer cells with their microenvironment, as well as their modulation by mechanical forces, are key determinants of the metastatic process. We reconstruct the metastatic process and describe the importance of key physical and mechanical processes at each step of the cascade. The emerging insight into these physical interactions may help to solve some long-standing questions in disease progression and may lead to new approaches to developing cancer diagnostics and therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The metastatic process.
Figure 2: The physics of invasion and intravasation.
Figure 3: Arrest of circulating tumour cells.
Figure 4: Capture and arrest of circulating tumour cells.

Similar content being viewed by others

References

  1. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    Article  CAS  Google Scholar 

  2. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nature Med. 12, 895–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  Google Scholar 

  4. Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cellmetastasis. Science 331, 1559–1564 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  Google Scholar 

  6. Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Rev. Cancer 9, 265–273 (2009).

    Article  CAS  Google Scholar 

  7. Hotary, K., Li, X. Y., Allen, E., Stevens, S. L. & Weiss, S. J. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev. 20, 2673–2686 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hotary, K. B., Allen, E. D., Brooks, P. C., Datta, N. S., Long, M. W. & Weiss, S. J. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114, 33–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Wever, O., Demetter, P., Mareel, M. & Bracke, M. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123, 2229–2238 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Provenzano, P. P., Inman, D. R., Eliceiri, K. W. & Keely, P. J. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28, 4326–4343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Sabeh, F., Shimizu-Hirota, R. & Weiss, S. J. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185, 11–19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fraley, S. I. et al. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nature Cell Biol. 12, 598–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Zaman, M. H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889–10894 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J. & Keely, P. J. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol. 163, 583–595 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamazaki, D., Kurisu, S. & Takenawa, T. Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene 28, 1570–1583 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184, 481–490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  22. Wehrle-Haller, B. & Imhof, B. The inner lives of focal adhesions. Trends Cell Biol. 12, 382–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  CAS  Google Scholar 

  24. Smith, M. L. et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5, e268 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sun, S. X., Walcott, S. & Wolgemuth, C. W. Cytoskeletal cross-linking and bundling in motor-independent contraction. Curr. Biol. 20, R649–R654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bloom, R. J., George, J. P., Celedon, A., Sun, S. X. & Wirtz, D. Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking. Biophys. J. 95, 4077–4088 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shih, W. T. & Yamada, S. Myosin IIA dependent retrograde flow drives 3D cellmigration. Biophys. J. 98, L29–L31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Legant, W. R., Miller, J. S., Blakely, B. L., Cohen, D. M., Genin, G. M. & Chen, C. S. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nature Methods 7, 969–971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ellsmere, J. C., Khanna, R. A. & Lee, J. M. Mechanical loading of bovine pericardium accelerates enzymatic degradation. Biomaterials 20, 1143–1150 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Beerling, E., Ritsma, L., Vrisekoop, N., Derksen, P. W. & van Rheenen, J. Intravital microscopy: new insights into metastasis of tumors. J. Cell Sci. 124, 299–310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sahai, E., Wyckoff, J., Philippar, U., Segall, J. E., Gertler, F. & Condeelis, J. Simultaneous imaging of, GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol. 5, 14 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Giampieri, S. et al. Localized and reversible TGF-β signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biol. 11, 1287–1296 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Hidalgo-Carcedo, C. et al. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nature Cell Biol. 13, 49–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Kurisu, S. & Takenawa, T. WASP and WAVE family proteins: friends or foes in cancer invasion? Cancer Sci. 101, 2093–2104 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Iwaya, K., Norio, K. & Mukai, K. Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod. Pathol. 20, 339–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Yoder, B. J. et al. The expression of fascin, an actin-bundling motility protein, correlates with hormone receptor-negative breast cancer and a more aggressive clinical course. Clin. Cancer Res. 11, 186–192 (2005).

    CAS  PubMed  Google Scholar 

  38. Li, J. et al. PTEN, a putative protein tyrosine phosphotase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biol. 5, 711–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Sounni, N. E. et al. MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. FASEB J. 16, 555–564 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Adhikari, A. S., Chai, J. & Dunn, A. R. Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J. Am. Chem. Soc. 133, 1686–1689 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar, S. & Weaver, V. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M. & Keely, P. J. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95, 5374–5384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wirtz, D. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38, 301–326 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Friedl, P., Wolf, K. & Lammerding, J. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23, 1–10 (2010).

    Google Scholar 

  49. Dahl, K. N., Kahn, S. M., Wilson, K. L. & Discher, D. E. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117, 4779–4786 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Tseng, Y., Lee, J. S., Kole, T. P., Jiang, I. & Wirtz, D. Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J. Cell Sci. 117, 2159–2167 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Gerlitz, G. & Bustin, M. Efficient cell migration requires global chromatin condensation. J. Cell Sci. 123, 2207–2217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Crisp, M. et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stewart-Hutchinson, P. J., Hale, C. M., Wirtz, D. & Hodzic, D. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 314, 1892–1905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hale, C. M. et al. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95, 5462–5475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, J. S. et al. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93, 2542–2552 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Starr, D. A. & Han, M. ANChors away: an actin based mechanism of nuclear positioning. J. Cell Sci. 116, 211–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Starr, D. A. et al. unc-83 encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development 128, 5039–5050 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Technau, M. & Roth, S. The Drosophila KASH domain proteins Msp-300 and Klarsicht and the SUN domain protein klaroid have no essential function during oogenesis. Fly (Austin) 2, 82–91 (2008).

    Article  Google Scholar 

  59. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cross, S. E., Jin, Y. S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nature Nanotech. 2, 780–783 (2007).

    Article  CAS  Google Scholar 

  61. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).

    Article  PubMed  Google Scholar 

  63. Panorchan, P., Lee, J. S., Kole, T. P., Tseng, Y. & Wirtz, D. Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix. Biophys. J. 91, 3499–3507 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baker, E. L., Bonnecaze, R. T. & Zaman, M. H. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97, 1013–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baker, E. L., Lu, J., Yu, D. H., Bonnecaze, R. T. & Zaman, M. H. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys. J. 99, 2048–2057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, J. S. et al. Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J. Cell Sci. 119, 1760–1768 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Swartz, M. A. & Fleury, M. E. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9, 229–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Mycielska, M. E. & Djamgoz, M. B. A. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J. Cell Sci. 117, 1631–1639 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Fidler, I. J., Yano, S., Zhang, R. D., Fujimaki, T. & Bucana, C. D. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol. 3, 53–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Turitto, V. T. Blood viscosity, mass transport, and thrombogenesis. Prog. Hemost. Thromb. 6, 139–177 (1982).

    CAS  PubMed  Google Scholar 

  71. Weinbaum, S., Cowin, S. C. & Zeng, Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Weinbaum, S., Duan, Y., Satlin, L. M., Wang, T. & Weinstein, A. M. Mechanotransduction in the renal tubule. Am. J. Physiol. Renal Physiol. 299, F1220–F1236 (2010).

    Article  CAS  Google Scholar 

  73. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature Med. 16, 116–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Zhu, C., Yago, T., Lou, J. Z., Zarnitsyna, V. I. & McEver, R. P. Mechanisms for flow-enhanced cell adhesion. Ann. Biomed. Eng. 36, 604–621 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chang, K. C. & Hammer, D. A. The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. Biophys. J. 76, 1280–1292 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Duguay, D., Foty, R. A. & Steinberg, M. S. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev. Biol. 253, 309–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Niessen, C. M. & Gumbiner, B. M. Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J. Cell Biol. 156, 389–399 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marshall, B. T., Long, M., Piper, J. W., Yago, T., McEver, R. P. & Zhu, C. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Lorger, M., Krueger, J. S., O'Neal, M., Staflin, K. & Felding-Habermann, B. Activation of tumor cell integrin αvβ3 controls angiogenesis and metastatic growth in the brain. Proc. Natl Acad. Sci. USA 106, 10666–10671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gasic, G. J., Gasic, T. B. & Stewart, C. C. Antimetastatic effects associated with platelet reduction. Proc. Natl Acad. Sci. USA 61, 46–52 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Camerer, E. et al. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104, 397–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Karpatkin, S., Pearlstein, E., Ambrogio, C. & Coller, B. S. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J. Clin. Invest. 81, 1012–1019 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nieswandt, B., Hafner, M., Echtenacher, B. & Mannel, D. N. Lysis of tumor cells by natutal killer cells in mice is impeded by platelets. Cancer Res. 59, 1295–1300 (1999).

    CAS  PubMed  Google Scholar 

  86. Palumbo, J. S. et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105, 178–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Burdick, M. M. & Konstantopoulos, K. Platelet-induced enhancement of LS174T colon carcinoma and THP-1 monocytoid cell adhesion to vascular endothelium under flow. Am. J. Physiol. Cell Physiol. 287, C539–C547 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Felding-Habermann, B., Habermann, R., Salvidar, E. & Ruggeri, Z. M. Role of β3 integrins in melanoma cell adhesion to activated platelets under flow. J. Biol. Chem. 271, 5892–5900 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Gay, L. J. & Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nature Rev. Cancer 11, 123–134 (2011).

    Article  CAS  Google Scholar 

  90. Nash, G., Turner, L., Scully, M. & Kakkar, A. Platelets and cancer. Lancet Oncol. 3, 425–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Pinedo, H. M., Verheul, H. M., D'Amato, R. J. & Folkman, J. Involvement of platelets in tumour angiogenesis? Lancet 352, 1775–1777 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F. & Honn, K. V. Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab. Invest. 53, 470–478 (1985).

    CAS  PubMed  Google Scholar 

  93. Burdick, M. M., McCaffery, J. M., Kim, Y. S., Bochner, B. S. & Konstantopoulos, K. Colon carcinoma cell glycolipids, integrins, and other glycoproteins mediate adhesion to HUVECs under flow. Am. J. Physiol. Cell Physiol. 284, C977–C987 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Borsig, L. et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl Acad. Sci. USA 98, 3352–3357 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Borsig, L., Wong, R., Hynes, R. O., Varki, N. M. & Varki, A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl Acad. Sci. USA 99, 2193–2198 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jadhav, S., Bochner, B. S. & Konstantopoulos, K. Hydrodynamic shear regulates the kinetics and receptor specificity of polymorphonuclear leukocyte – colon carcinoma cell adhesive interactions. J. Immunol. 167, 5986–5993 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. McCarty, O. J. T., Mousa, S. A., Bray, P. F. & Konstantopoulos, K. Immobilized platelets support human colon carcinoma cell tethering, rolling and firm adhesion under dynamic flow conditions. Blood 96, 1789–1797 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Laubli, H., Stevenson, J. L., Varki, A., Varki, N. M. & Borsig, L. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 66, 1536–1542 (2006).

    Article  PubMed  CAS  Google Scholar 

  99. Biancone, L., Araki, M., Araki, K., Vassalli, P. & Stamenkovic, I. Redirection of tumor metastasis by expression of E-selectin in vivo. J. Exp. Med. 183, 581–587 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Mannori, G. et al. Inhibition of colon carcinoma cell lung colony formation by a soluble form of E-selectin. Am. J. Pathol. 151, 233–243 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Napier, S. L., Healy, Z. R., Schnaar, R. L. & Konstantopoulos, K. Selectin ligand expression regulates the initial vascular interactions of colon carcinoma cells: the roles of CD44V and alternative sialofucosylated selectin ligands. J. Biol. Chem. 282, 3433–3441 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Thomas, S. N., Schnaar, R. L. & Konstantopoulos, K. Podocalyxin-like protein is an E-/L-selectin ligand on colon carcinoma cells: comparative biochemical properties of selectin ligands in host and tumor cells. Am. J. Physiol. Cell Physiol. 296, C505–C513 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Thomas, S. N., Zhu, F., Schnaar, R. L., Alves, C. S. & Konstantopoulos, K. Carcinoembryonic antigen and CD44v cooperate to mediate colon carcinoma cell adhesion to E- and L-selectin in shear flow. J. Biol. Chem. 283, 15647–15655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Konstantopoulos, K. & Thomas, S. N. Cancer cells in transit: the vascular interactions of tumor cells. Annu. Rev. Biomed. Eng. 11, 177–202 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Varki, A., Varki, N. M. & Borsig, L. Molecular basis of metastasis. N. Engl. J. Med. 360, 1678–1679; author reply 1679–1680 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Jain, S. et al. Platelet glycoprotein Ibα supports experimental lung metastasis. Proc. Natl Acad. Sci. USA 104, 9024–9028 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jain, S., Russell, S. & Ware, J. Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J. Thromb. Haemost. 7, 1713–1717 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Weiss, L. Patterns of metastasis. Cancer Metastasis Rev. 19, 281–301 (2000).

    Article  Google Scholar 

  109. Jacob, K., Sollier, C. & Jabado, N. Circulating tumor cells: detection, molecular profiling and future prospects. Expert Rev. Proteomics 4, 741–756 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Fidler, I. J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Rev. Cancer 3, 453–458 (2003).

    Article  CAS  Google Scholar 

  111. Weiss, L. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin. Exp. Metastasis 10, 191–199 (1992).

    Article  CAS  PubMed  Google Scholar 

  112. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573 (1889).

    Article  Google Scholar 

  113. Trepel, M., Arap, W. & Pasqualini, R. In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr. Opin. Chem. Biol. 6, 399–404 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Chang, S. F. et al. Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc. Natl Acad. Sci. USA 105, 3927–3932 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lawler, K., O'Sullivan, G., Long, A. & Kenny, D. Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway. Cancer Sci. 100, 1082–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Raub, C. B. et al. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92, 2212–2222 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell Biol. 7, 211–224 (2006).

    Article  CAS  Google Scholar 

  118. Buxboim, A., Ivanovska, I. L. & Discher, D. E. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells 'feel' outside and in? J. Cell Sci. 123, 297–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goldman, A. J., Cox, R. G. & Brenner, H. Slow viscous motion of a sphere parallel to a plane wall — 2 Couette flow. Chem. Eng. Sci. 22, 653–660 (1967).

    Article  CAS  Google Scholar 

  120. Hanley, W. D., Wirtz, D. & Konstantopoulos, K. Distinct kinetic and mechanical properties govern selectin-leukocyte interactions. J. Cell Sci. 117, 2503–2511 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Panorchan, P. et al. Single-molecule analysis of cadherin-mediated cell-cell adhesion. J. Cell Sci. 119, 66–74 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Raman, P., Alves, C., Wirtz, D. & Konstantopoulos, K. Single molecule binding of CD44 to fibrin versus P-selectin predicts their distinct shear-dependent interactions in cancer. J. Cell Sci. 124, 1903–1910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, F., Redick, S. D., Erickson, H. P. & Moy, V. T. Force measurements of the α5β1 integrin-fibronectin interaction. Biophys. J. 84, 1252–1262 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bajpai, S. et al. α-Catenin mediates initial E-cadherin-dependent cell-cell recognition and subsequent bond strengthening. Proc. Natl Acad. Sci. USA 105, 18331–18336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bajpai, S., Feng, Y., Krishnamurthy, R., Longmore, G. D. & Wirtz, D. Loss of α-catenin decreases the strength of single E-cadherin bonds between human cancer cells. J. Biol. Chem. 284, 18252–18259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Garcia, A. J., Ducheyne, P. & Boettiger, D. Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials 18, 1091–1098 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. DeGrendele, H. C., Kosfiszer, M., Estess, P. & Siegelman, M. H. CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. J. Immunol. 159, 2549–2553 (1997).

    CAS  Google Scholar 

  128. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Azioune, A., Storch, M., Bornens, M., Thery, M. & Piel, M. Simple and rapid process for single cell micro-patterning. Lab. Chip 9, 1640–1642 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Thery, M. & Bornens, M. Cell shape and cell division. Curr. Opin. Cell Biol. 18, 648–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. USA 106, 19017–19022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Mali, P., Wirtz, D. & Searson, P. C. Interplay of RhoA and motility in the programmed spreading of daughter cells postmitosis. Biophys. J. 99, 3526–3534 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wildt, B., Wirtz, D. & Searson, P. C. Programmed subcellular release for studying the dynamics of cell detachment. Nature Methods 6, 211–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wildt, B., Wirtz, D. & Searson, P. C. Triggering cell detachment from patterned electrode arrays by programmed subcellular release. Nature Protoc. 5, 1273–1280 (2010).

    Article  CAS  Google Scholar 

  136. Ghaly, T., Wildt, B. E. & Searson, P. C. Electrochemical release of fluorescently labeled thiols from patterned gold surfaces. Langmuir 26, 1420–1423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sniadecki, N. J., Lamb, C. M., Liu, Y., Chen, C. S. & Reich, D. H. Magnetic microposts for mechanical stimulation of biological cells: fabrication, characterization, and analysis. Rev. Sci. Instrum. 79, 044302 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Song, B. et al. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nature Protoc. 2, 1479–1489 (2007).

    Article  CAS  Google Scholar 

  141. Huang, C. W., Cheng, J. Y., Yen, M. H. & Young, T. H. Electrotaxis of lung cancer cells in a multiple-electric-field chip. Biosens. Bioelectron. 24, 3510–3516 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Lee, J. S., Chang, M. I., Tseng, Y. & Wirtz, D. Cdc42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress. Mol. Biol. Cell 16, 871–880 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wojciak-Stothard, B. & Ridley, A. J. Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J. Cell Biol. 161, 429–439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Daniels, B. R., Masi, B. C. & Wirtz, D. Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys. J. 90, 4712–4719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Massiera, G., Van Citters, K. M., Biancaniello, P. L. & Crocker, J. C. Mechanics of single cells: rheology, time dependence, and fluctuations. Biophys. J. 93, 3703–3713 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Solon, J., Levental, I., Sengupta, K., Georges, P. C. & Janmey, P. A. Fibroblast adaptation and stiffness matching to soft eastic substrates. Biophys. J. 93, 4453–4461 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhou, X. et al. Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev. 22, 1231–1243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  CAS  PubMed  Google Scholar 

  151. Rahman, A., Tseng, Y. & Wirtz, D. Micromechanical coupling between cell surface receptors and RGD peptides. Biochem. Biophys. Res. Commun. 296, 771–778 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Kishino, A. & Yanagida, T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76 (1988).

    Article  CAS  PubMed  Google Scholar 

  153. Zheng, J. et al. Tensile regulation of axonal elongation and initiation. J. Neurosci. 11, 1117–1125 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kumar, S. et al. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90, 3762–3773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Grill, S. W., Gonczy, P., Stelzer, E. H. & Hyman, A. A. Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409, 630–633 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Grill, S. W., Howard, J., Schaffer, E., Stelzer, E. H. & Hyman, A. A. The distribution of active force generators controls mitotic spindle position. Science 301, 518–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J. & Discher, D. E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104, 15619–15624 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Gerecht, S. et al. The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials 28, 4068–4077 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Karuri, N. W. et al. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells. J. Cell Sci. 117, 3153–3164 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J. & Nealey, P. F. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116, 1881–1892 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Kaspar, D., Seidl, W., Neidlinger-Wilke, C., Ignatius, A. & Claes, L. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. J. Biomech. 33, 45–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Hubbell, J. Biomaterials in tissue engineering. Biotechnology 13, 565–576 (1995).

    CAS  PubMed  Google Scholar 

  166. Irimia, D. & Toner, M. Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr Biol. (Camb.) 1, 506–512 (2009).

    Article  CAS  Google Scholar 

  167. Wang, C. J. & Levchenko, A. Microfluidics technology for systems biology research. Methods Mol. Biol. 500, 203–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Sundararaghavan, H. G., Monteiro, G. A., Firestein, B. L. & Shreiber, D. I. Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol. Bioeng. 102, 632–643 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Rogers, S. S., Waigh, T. A. & Lu, J. R. Intracellular microrheology of motile Amoeba proteus. Biophys. J. 94, 3313–3322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Condeelis, J. & Segall, J. E. Intravital imaging of cell movement in tumours. Nature Rev. Cancer 3, 921–930 (2003).

    Article  CAS  Google Scholar 

  172. Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nature Methods 5, 1019–1021 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Phair, R. D. & Misteli, T. Kinetic modelling approaches to in vivo imaging. Nature Rev. Mol. Cell Biol. 2, 898–907 (2001).

    Article  CAS  Google Scholar 

  175. Pertz, O. & Hahn, K. M. Designing biosensors for Rho family proteins — deciphering the dynamics of Rho family GTPase activation in living cells. J. Cell Sci. 117, 1313–1318 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A. & Hahn, K. M. Activation of endogenous Cdc42 visualized in living cells. Science 305, 1615–1619 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).

    Article  CAS  PubMed  Google Scholar 

  178. Magde, D., Elson, E. L. & Webb, W. W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61 (1974).

    Article  CAS  PubMed  Google Scholar 

  179. Daniels, B. R., Perkins, E. M., Dobrowsky, T. M., Sun, S. X. & Wirtz, D. Asymmetric enrichment of PIE-1 in the Caenorhabditis elegans zygote mediated by binary counterdiffusion. J. Cell Biol. 184, 473–479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the US National Institutes of Health (grants U54CA143868, U54CA151838 and RO1CA101135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denis Wirtz, Konstantinos Konstantopoulos or Peter C. Searson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Amoeboid migration

A mode of three-dimensional cell migration in a matrix that involves dynamic cell-shape changes through actomyosin assembly and contractility, and adhesion to the extracellular matrix.

Epithelial-to-mesenchymal transition

(EMT). A morphological change that epithelial cells undergo, from a cubical to an elongated shape, following oncogenic transformation, which is often accompanied by loss of expression of the adhesion molecule E-cadherin. Post-EMT, cells adopt a high-motility phenotype.

Filopodia

Narrow projections of the cytoplasm extended beyond the lamellipodia of migrating cells. Filopodia are associated with the formation of nascent focal adhesions with a substratum.

Focal adhesions

Integrin clusters located at the basal surface of adherent cells that connect the extracellular matrix to the cytoskeleton through focal adhesion proteins.

Interstitial flow

Fluid flow in the extracellular matrix, often associated with lymphatic drainage of plasma back to the vascular system.

Intravital microscopy

A microscopy technique used for the observation of biological responses, such as leukocyteendothelial cell interactions, in living tissues in real time. Translucent tissues are commonly used, such as the mesentery or cremaster muscle, which can be easily exteriorized for microscopic observation.

Lamellipodia

Large cytoplasmic projects found primarily at the leading edge of migrating cells, particularly on two-dimensional substrates.

Mechanosensing

The ability of cells to sense and respond to changes in the mechanical compliance of a substrate. Mechanosensing is mediated by focal adhesions and the cytoskeleton in two-dimensional cell culture.

Mesenchymal migration

A mode of three-dimensional cell migration in a matrix that involves integrin-based adhesion. Mesenchymal migration occurs when the pore size of the matrix is much smaller than the cell nucleus.

Pseudopodia

Bulges of constantly changing shape observed in the plasma membrane of migrating cells during amoeboid migration on two-dimensional substrates and mesenchymal migration through three-dimensional matrices.

Shear rate

The relative velocities of adjacent layers of fluid under shear force in conditions of laminar flow.

Shear stress

The magnitude of the tangential force applied onto the surface of an object per unit area. Shear stress is expressed in units of force per unit area (Newtons m−2 in metres kilograms seconds (MKS) units or dynes cm−2 in centimetres grams seconds (CGS) units).

Stiffness

(Also known as elasticity or elastic modulus). A measure of the ability of a material to resist shear forces similarly to a solid. Rubber is elastic and shows little viscosity. A crosslinked collagen matrix is elastic, but not viscous as it does not flow. The cytoplasm of cells is both elastic and viscous (viscoelastic) depending on the rate of deformation.

Stress fibres

Contractile actin filament bundles that contain myosin II, which serves both as an F-actin bundling protein and as a force generator. Stress fibres terminate at focal adhesions at the basal surface of cells on substrates.

Surface tangential velocity

The velocity at the surface of a spinning object.

Translational velocity

The velocity of an object in space.

Viscosity

A measure of the ability of a material to flow like a liquid. Water, glycerol and honey are liquids of increasing viscosity; they are only viscous and show no elasticity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirtz, D., Konstantopoulos, K. & Searson, P. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11, 512–522 (2011). https://doi.org/10.1038/nrc3080

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3080

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer