Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Molecular targets of phytochemicals for cancer prevention

Abstract

Although successful for a limited number of tumour types, the efficacy of cancer therapies, especially for late-stage disease, remains poor overall. Many have argued that this could be avoided by focusing on cancer prevention, which has now entered the arena of targeted therapies. During the process of identifying preventive agents, dietary phytochemicals, which are thought to be safe for human use, have emerged as modulators of key cellular signalling pathways. The task now is to understand how these chemicals perturb these pathways by modelling their interactions with their target proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for identifying preventive agents and molecular targets.
Figure 2: Representative oncogenic signalling pathways.

Similar content being viewed by others

References

  1. Sporn, M. B. Approaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res. 36, 2699–2702 (1976).

    CAS  PubMed  Google Scholar 

  2. Wattenberg, L. W. Chemoprevention of cancer. Cancer Res. 45, 1–8 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Bode, A. M. & Dong, Z. Cancer prevention research — then and now. Nature Rev. Cancer 9, 508–516 (2009).

    Article  CAS  Google Scholar 

  4. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. N. Engl. J. Med. 330, 1029–1035 (1994).

  5. Omenn, G. S. et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J. Natl Cancer Inst. 88, 1550–1559 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. William, W. N., Jr., Heymach, J. V., Kim, E. S. & Lippman, S. M. Molecular targets for cancer chemoprevention. Nature Rev. Drug Discov. 8, 213–225 (2009).

    Article  CAS  Google Scholar 

  7. Fisher, B. et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J. Natl Cancer Inst. 97, 1652–1662 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Fisher, B. et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl Cancer Inst. 90, 1371–1388 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Vogel, V. G. et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295, 2727–2741 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Kulkarni, G. S. et al. Evidence for a biopsy derived grade artifact among larger prostate glands. J. Urol. 175, 505–509 (2006).

    Article  PubMed  Google Scholar 

  11. Pinsky, P., Parnes, H. & Ford, L. Estimating rates of true high-grade disease in the prostate cancer prevention trial. Cancer Prev. Res. (Phila Pa) 1, 182–186 (2008).

    Article  Google Scholar 

  12. Redman, M. W. et al. Finasteride does not increase the risk of high-grade prostate cancer: a bias-adjusted modeling approach. Cancer Prev. Res. (Phila) 1, 174–181 (2008).

    Article  CAS  Google Scholar 

  13. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Zubrod, C. G. The national program for cancer chemotherapy. JAMA 222, 1161–1162 (1972).

    Article  CAS  PubMed  Google Scholar 

  15. Vaishampayan, U., Parchment, R. E., Jasti, B. R. & Hussain, M. Taxanes: an overview of the pharmacokinetics and pharmacodynamics. Urology 54, 22–29 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Zykova, T. A. et al. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol. Carcinog. 47, 797–805 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, K. W. et al. The resveratrol analogue 3, 5, 3', 4', 5'-pentahydroxy-trans-stilbene inhibits cell transformation via MEK. Int. J. Cancer 123, 2487–2496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. She, Q. B., Bode, A. M., Ma, W. Y., Chen, N. Y. & Dong, Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res. 61, 1604–1610 (2001).

    CAS  PubMed  Google Scholar 

  19. Shim, J. H. et al. (-)-Epigallocatechin gallate regulates CD3-mediated T cell receptor signaling in leukemia through the inhibition of ZAP-70 kinase. J. Biol. Chem. 283, 28370–28379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He, Z. et al. Fyn is a novel target of (-)-epigallocatechin gallate in the inhibition of JB6 Cl41 cell transformation. Mol. Carcinog. 47, 172–183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ermakova, S. P. et al. (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res. 66, 9260–9269 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Bode, A. M., Ma, W. Y., Surh, Y. J. & Dong, Z. Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [6]-gingerol. Cancer Res. 61, 850–853 (2001).

    CAS  PubMed  Google Scholar 

  23. Jeong, C. H. et al. [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase. Cancer Res. 69, 5584–5591 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Jung, S. K. et al. Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer Res. 68, 6021–6029 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Jung, S. K. et al. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo. Carcinogenesis 31, 911–917 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Jung, S. K. et al. Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf. Biochem. Pharmacol. 79, 1455–1461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nature Rev. Genet. 9, 554–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Iorns, E., Lord, C. J., Turner, N. & Ashworth, A. Utilizing RNA interference to enhance cancer drug discovery. Nature Rev. Drug Discov. 6, 556–568 (2007).

    Article  CAS  Google Scholar 

  29. Moffat, J. & Sabatini, D. M. Building mammalian signalling pathways with RNAi screens. Nature Rev. Mol. Cell Biol. 7, 177–187 (2006).

    Article  CAS  Google Scholar 

  30. McInnes, C. Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol. 11, 494–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Irwin, J. J. & Shoichet, B. K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model 45, 177–182 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bernstein, F. C. et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).

    Article  CAS  PubMed  Google Scholar 

  33. Xiang, Z. Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 7, 217–227 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McWilliam, H. et al. Web services at the European Bioinformatics Institute-2009. Nucleic Acids Res. 37, W6–W10 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng, K. W., Wong, C. C., Wang, M., He, Q. Y. & Chen, F. Identification and characterization of molecular targets of natural products by mass spectrometry. Mass Spectrom. Rev. 29, 126–155 (2010).

    CAS  PubMed  Google Scholar 

  36. Rix, U. & Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nature Chem. Biol. 5, 616–624 (2009).

    Article  CAS  Google Scholar 

  37. Harriman, D. J. & Deslongchamps, G. Reverse-docking study of the TADDOL-catalyzed asymmetric hetero-Diels-Alder reaction. J. Mol. Model 12, 793–797 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Dixon, S. L. et al. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des 20, 647–671 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Nagarajan, S. et al. IKKbeta inhibitors identification part I: homology model assisted structure based virtual screening. Bioorg Med. Chem. 17, 2759–2766 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Perez-Sanchez, H. & Wenzel, W. Optimization methods for virtual screening on novel computational architectures. Curr. Comput. Aided Drug Des 7, 44–52 (2010).

    Article  Google Scholar 

  41. Oi, N. et al. Resveratrol, a red wine polyphenol, suppresses pancreatic cancer by inhibiting leukotriene a4 hydrolase. Cancer Res. 70, 9755–9764 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ohren, J. F. et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nature Struct. Mol. Biol. 11, 1192–1197 (2004).

    Article  CAS  Google Scholar 

  43. Lee, K. W. et al. Raf and MEK protein kinases are direct molecular targets for the chemopreventive effect of quercetin, a major flavonol in red wine. Cancer Res. 68, 946–955 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, K. W. et al. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis 28, 1918–1927 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Kang, N. J. et al. Equol, a metabolite of the soybean isoflavone daidzein, inhibits neoplastic cell transformation by targeting the MEK/ERK/p90RSK/activator protein-1 pathway. J. Biol. Chem. 282, 32856–32866 (2007).

    Article  CAS  Google Scholar 

  46. Fischmann, T. O. et al. Crystal structures of MEK1 binary and ternary complexes with nucleotides and inhibitors. Biochemistry 48, 2661–2674 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Engelman, J. A. & Cantley, L. C. Chemoprevention meets glucose control. Cancer Prev. Res. (Phila) 3, 1049–1052 (2010).

    Article  CAS  Google Scholar 

  48. Walker, E. H. et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 6, 909–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Fisher, R. P. CDKs and cyclins in transition(s). Curr. Opin. Genet. Dev. 7, 32–38 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, D. E. et al. 7,3′,4′-Trihydroxyisoflavone inhibits epidermal growth factor-induced proliferation and transformation of JB6 P+ mouse epidermal cells by suppressing cyclin-dependent kinases and phosphatidylinositol 3-kinase. J. Biol. Chem. 285, 21458–21466 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Byun, S. et al. Luteolin inhibits protein kinase C(epsilon) and c-Src activities and UVB-induced skin cancer. Cancer Res. 70, 2415–2423 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, K. M. et al. 5-deoxykaempferol plays a potential therapeutic role by targeting multiple signaling pathways in skin cancer. Cancer Prev. Res. (Phila Pa) 3, 454–465 (2010).

    Article  CAS  Google Scholar 

  54. Lee, K. M. et al. Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity. Biochem. Pharmacol. 80, 2042–2049 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hwang, M. K., Kang, N. J., Heo, Y. S., Lee, K. W. & Lee, H. J. Fyn kinase is a direct molecular target of delphinidin for the inhibition of cyclooxygenase-2 expression induced by tumor necrosis factor-alpha. Biochem. Pharmacol. 77, 1213–1222 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Kang, N. J. et al. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis 30, 321–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, J. E. et al. Cyanidin suppresses ultraviolet B-induced COX-2 expression in epidermal cells by targeting MKK4, MEK1, and Raf-1. Biochem. Pharmacol. 79, 1473–1482 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Kim, J. E. et al. MKK4 is a novel target for the inhibition of tumor necrosis factor-alpha-induced vascular endothelial growth factor expression by myricetin. Biochem. Pharmacol. 77, 412–421 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Kwon, J. Y. et al. Delphinidin suppresses ultraviolet B-induced cyclooxygenases-2 expression through inhibition of MAPKK4 and PI-3 kinase. Carcinogenesis 30, 1932–1940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cho, Y. Y. et al. A regulatory mechanism for RSK2 NH(2)-terminal kinase activity. Cancer Res. 69, 4398–4406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smith, J. A. et al. Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res. 65, 1027–1034 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Samuelsson, B., Dahlen, S. E., Lindgren, J. A., Rouzer, C. A. & Serhan, C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237, 1171–1176 (1987).

    Article  CAS  PubMed  Google Scholar 

  64. Avis, I. et al. Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J. 15, 2007–2009 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Goulet, J. L., Snouwaert, J. N., Latour, A. M., Coffman, T. M. & Koller, B. H. Altered inflammatory responses in leukotriene-deficient mice. Proc. Natl Acad. Sci. USA 91, 12852–12856 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gunning, W. T., Kramer, P. M., Steele, V. E. & Pereira, M. A. Chemoprevention by lipoxygenase and leukotriene pathway inhibitors of vinyl carbamate-induced lung tumors in mice. Cancer Res. 62, 4199–4201 (2002).

    CAS  PubMed  Google Scholar 

  67. Moody, T. W. et al. Lipoxygenase inhibitors prevent lung carcinogenesis and inhibit non-small cell lung cancer growth. Exp. Lung Res. 24, 617–628 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Davies, D. R. et al. Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography. J. Med. Chem. 52, 4694–4715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jones, H. E. et al. Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr. Relat Cancer 11, 793–814 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Warshamana-Greene, G. S. et al. The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin. Cancer Res. 11, 1563–1571 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Li, M. et al. Direct inhibition of insulin-like growth factor-I receptor kinase activity by (–)-epigallocatechin-3-gallate regulates cell transformation. Cancer Epidemiol. Biomarkers Prev. 16, 598–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Palermo, C. M., Westlake, C. A. & Gasiewicz, T. A. Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry 44, 5041–5052 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Shim, J. H. et al. Epigallocatechin gallate suppresses lung cancer cell growth through Ras-GTPase-activating protein SH3 domain-binding protein 1. Cancer Prev. Res. (Phila Pa) 3, 670–679 (2010).

    Article  CAS  Google Scholar 

  74. Ermakova, S. et al. The intermediate filament protein vimentin is a new target for epigallocatechin gallate. J. Biol. Chem. 280, 16882–16890 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Engelman, J. A. & Janne, P. A. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res. 14, 2895–2899 (2008).

    Article  PubMed  Google Scholar 

  79. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Bode, A. M. & Dong, Z. in Phytochemicals in Health and Disease (eds. Bao, Y. & Fenwick, R.) 257–284 (Marcel Dekker, Inc, New York, 2004).

    Book  Google Scholar 

  81. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Herbst, R. S. & Lippman, S. M. Molecular signatures of lung cancer—toward personalized therapy. N. Engl. J. Med. 356, 76–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. van't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  84. Blackburn, E. H. Highlighting the science of cancer prevention. Cancer Prev. Res. (Phila) 3, 393 (2010).

    Article  Google Scholar 

  85. Blackburn, E. H., Tlsty, T. D. & Lippman, S. M. Unprecedented opportunities and promise for cancer prevention research. Cancer Prev. Res. (Phila) 3, 394–402 (2010).

    Article  Google Scholar 

  86. Shin, D. S. et al. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res. 69, 193–202 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Oh, S. H. et al. Structural basis for depletion of heat shock protein 90 client proteins by deguelin. J. Natl Cancer Inst. 99, 949–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Kang, N. J. et al. Delphinidin attenuates neoplastic transformation in JB6 Cl41 mouse epidermal cells by blocking Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling. Cancer Prev. Res. (Phila Pa) 1, 522–531 (2008).

    Article  CAS  Google Scholar 

  89. Lu, H., Chang, D. J., Baratte, B., Meijer, L. & Schulze-Gahmen, U. Crystal structure of a human cyclin-dependent kinase 6 complex with a flavonol inhibitor, fisetin. J. Med. Chem. 48, 737–743 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, K. M. et al. Phosphatidylinositol 3-kinase, a novel target molecule for the inhibitory effects of kaempferol on neoplastic cell transformation. Carcinogenesis 31, 1338–1343 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Kumamoto, T., Fujii, M. & Hou, D. X. Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett. 275, 17–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Kang, N. J. et al. Cocoa procyanidins suppress transformation by inhibiting mitogen-activated protein kinase kinase. J. Biol. Chem. 283, 20664–20673 (2008).

    Article  CAS  Google Scholar 

  93. Hwang, M. K., Song, N. R., Kang, N. J., Lee, K. W. & Lee, H. J. Activation of phosphatidylinositol 3-kinase is required for tumor necrosis factor-alpha-induced upregulation of matrix metalloproteinase-9: its direct inhibition by quercetin. Int. J. Biochem. Cell Biol. 41, 1592–1600 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, K. M., Hwang, M. K., Lee, D. E., Lee, K. W. & Lee, H. J. Protective effect of quercetin against arsenite-induced COX-2 expression by targeting PI3K in rat liver epithelial cells. J. Agric. Food Chem. 58, 5815–5820 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article was supported by grants from the US National Institutes of Health CA077646, CA111536, CA111536, CA120388, ES016548 and R37CA081064, The Hormel Foundation, and the Leap Research Program (No. 2010-0029,233) and the World Class Institute Program founded by the Korea Research Foundation, Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ki Won Lee or Zigang Dong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Clinically approved chemotherapeutic agents derived from phytochemicals (PDF 182 kb)

Related links

Related links

FURTHER INFORMATION

Zigang Dong's homepage

Asinex database

EMBL-EBI

National Center for Biotechnology Information

PDB

Potential Drug Target Databast (PDTD)

ZINC database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Bode, A. & Dong, Z. Molecular targets of phytochemicals for cancer prevention. Nat Rev Cancer 11, 211–218 (2011). https://doi.org/10.1038/nrc3017

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3017

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer