Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibody-based proteomics: fast-tracking molecular diagnostics in oncology

An Author Correction to this article was published on 24 March 2022

This article has been updated

Key Points

  • Personalization of cancer therapy requires the identification of unambiguous diagnostic, prognostic and predictive biomarkers to facilitate the accurate stratification of patients and the monitoring of responses to targeted therapies.

  • The systematic generation and validation of specific antibodies offers a high-throughput mechanism for the functional exploration of the proteome and a logical approach for fast-tracking the translation of identified biomarkers.

  • Multiple approaches exist, each with specific characteristics and advantages that are suitable for a wide range of applications, which capitalize on the inherent specificity and sensitivity of antibodies as affinity reagents.

  • The integration of antibody-based approaches with existing genomic and transcriptomic methods offers huge potential, and the clinical implementation of new high-throughput antibody-based approaches will depend on the integration of data across various platforms.

  • The clinical application of new antibody-based assays demonstrates their utility as accurate, sensitive and robust diagnostic and prognostic tests and has led to the development of a new approach, known as pathway diagnostics, which is likely to have a crucial role in the design of future molecular therapeutic trials.

Abstract

The effective implementation of personalized cancer therapeutic regimens depends on the successful identification and translation of informative biomarkers to aid clinical decision making. Antibody-based proteomics occupies a pivotal space in the cancer biomarker discovery and validation pipeline, facilitating the high-throughput evaluation of candidate markers. Although the clinical utility of these emerging technologies remains to be established, the traditional use of antibodies as affinity reagents in clinical diagnostic and predictive assays suggests that the rapid translation of such approaches is an achievable goal. Furthermore, in combination with, or as alternatives to, genomic and transcriptomic methods for patient stratification, antibody-based proteomics approaches offer the promise of additional insight into cancer disease states. In this Review, we discuss the current status of antibody-based proteomics and its contribution to the development of new assays that are crucial for the realization of individualized cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Automated quantification of protein expression using immunohistochemistry and immunofluorescence.
Figure 2: Antibody-based proteomics and personalized cancer medicine.
Figure 3: Translating antibody-based assays into the clinic.

Similar content being viewed by others

Change history

References

  1. Chin, L. & Gray, J. W. Translating insights from the cancer genome into clinical practice. Nature 452, 553–563 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. van't Veer, L. J. & Bernards, R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452, 564–570 (2008).

    CAS  PubMed  Google Scholar 

  3. Hartwell, L., Mankoff, D., Paulovich, A., Ramsey, S. & Swisher, E. Cancer biomarkers: a systems approach. Nature Biotechnol. 24, 905–908 (2006).

    CAS  Google Scholar 

  4. Hanash, S. HUPO initiatives relevant to clinical proteomics. Mol. Cell. Proteomics 3, 298–301 (2004).

    CAS  PubMed  Google Scholar 

  5. Uhlen, M. & Ponten, F. Antibody-based proteomics for human tissue profiling. Mol. Cell. Proteomics 4, 384–393 (2005).

    CAS  PubMed  Google Scholar 

  6. Clamp, M. et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl Acad. Sci. USA 104, 19428–19433 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ponten, F., Jirstrom, K. & Uhlen, M. The Human Protein Atlas - a tool for pathology. J. Pathol. 216, 387–393 (2008).

    CAS  PubMed  Google Scholar 

  8. Taussig, M. J. et al. ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nature Methods 4, 13–17 (2007).

    CAS  PubMed  Google Scholar 

  9. Uhlén, M. et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteomics 4, 1920–1932 (2005). This paper describes the Human Protein Atlas as an antibody-based proteomics initiative.

    PubMed  Google Scholar 

  10. Warford, A., Flack, G., Conquer, J. S., Zola, H. & McCafferty, J. Assessing the potential of immunohistochemistry for systematic gene expression profiling. J. Immunol. Methods 318, 125–137 (2007).

    CAS  PubMed  Google Scholar 

  11. Jogi, A. et al. Nuclear expression of the RNA-binding protein RBM3 is associated with an improved clinical outcome in breast cancer. Mod. Pathol. 22, 1564–1574 (2009).

    PubMed  Google Scholar 

  12. Bordeaux, J. et al. Antibody validation. Biotechniques 48, 197–209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med. 4, 844–847 (1998). This seminal paper describes TMA technology.

    CAS  PubMed  Google Scholar 

  14. Battifora, H. The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab. Invest. 55, 244–248 (1986).

    CAS  PubMed  Google Scholar 

  15. Wan, W. H., Fortuna, M. B. & Furmanski, P. A rapid and efficient method for testing immunohistochemical reactivity of monoclonal antibodies against multiple tissue samples simultaneously. J. Immunol. Methods 103, 121–129 (1987).

    CAS  PubMed  Google Scholar 

  16. Camp, R. L., Neumeister, V. & Rimm, D. L. A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J. Clin. Oncol. 26, 5630–5637 (2008).

    PubMed  Google Scholar 

  17. Brennan, D. J. et al. Contribution of DNA and tissue microarray technology to the identification and validation of biomarkers and personalised medicine in breast cancer. Cancer Genom. Proteom. 4, 3–16 (2007).

    Google Scholar 

  18. Hewitt, S. M. The application of tissue microarrays in the validation of microarray results. Meth.Enzymol. 410, 400–415 (2006).

    CAS  Google Scholar 

  19. Fernandez, D. C., Bhargava, R., Hewitt, S. M. & Levin, I. W. Infrared spectroscopic imaging for histopathologic recognition. Nature Biotech. 23, 469–474 (2005).

    CAS  Google Scholar 

  20. Rimm, D. What brown cannot do for you. Nature Biotech. 24, 914–916 (2006).

    CAS  Google Scholar 

  21. Rhodes, A., Jasani, B., Barnes, D. M., Bobrow, L. G. & Miller, K. D. Reliability of immunohistochemical demonstration of oestrogen receptors in routine practice: interlaboratory variance in the sensitivity of detection and evaluation of scoring systems. J. Clin. Pathol. 53, 125–130 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brennan, D. J. et al. Altered cytoplasmic-nuclear ratio of survivin is a prognostic indicator in breast cancer. Clin. Cancer Res. 14, 2681–2689 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mulrane, L., Rexhepaj, E., Penney, S., Callanan, J. J. & Gallagher, W. M. Automated image analysis in histopathology: a valuable tool in medical diagnostics. Expert Rev. Mol. Diagn. 8, 707–725 (2008).

    PubMed  Google Scholar 

  24. Rexhepaj, E. et al. Novel image analysis approach for quantifying expression of nuclear proteins assessed by immunohistochemistry: application to measurement of estrogen and progesterone receptor levels in breast cancer. Breast Cancer Res. 10, R89 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. Rojo, M. G., Garcia, G. B., Mateos, C. P., Garcia, J. G. & Vicente, M. C. Critical comparison of 31 commercially available digital slide systems in pathology. Int. J. Surg. Pathol. 14, 285–305 (2006).

    PubMed  Google Scholar 

  26. Strömberg, S. et al. A high-throughput strategy for protein profiling in cell microarrays using automated image analysis. Proteomics 7, 2142–2150 (2007).

    PubMed  Google Scholar 

  27. Brennan, D. J. et al. The transcription factor Sox11 is a prognostic factor for improved recurrence-free survival in epithelial ovarian cancer. Eur. J. Cancer 45, 1510–1517 (2009).

    CAS  PubMed  Google Scholar 

  28. Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    CAS  PubMed  Google Scholar 

  29. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  30. Brennan, D. J. et al. Tumour-specific HMG-CoAR is an independent predictor of recurrence free survival in epithelial ovarian cancer. BMC Cancer 10, 125 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Camp, R., Chung, G. & Rimm, D. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nature Med. 8, 1323–1327 (2002).

    CAS  PubMed  Google Scholar 

  32. Dolled-Filhart, M. et al. Classification of breast cancer using genetic algorithms and tissue microarrays. Clin. Cancer Res. 12, 6459–6468 (2006).

    CAS  PubMed  Google Scholar 

  33. Giltnane, J. et al. Quantitative measurement of epidermal growth factor receptor is a negative predictive factor for tamoxifen response in hormone receptor positive premenopausal breast cancer. J. Clin. Oncol. 25, 3007–3014 (2007).

    PubMed  Google Scholar 

  34. McCabe, A., Dolled-Filhart, M., Camp, R. L. & Rimm, D. L. Automated quantitative analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis. J. Natl Cancer Inst. 97, 1808–1815 (2005). This paper reported the demonstration of automated analysis of immunofluorescence.

    CAS  PubMed  Google Scholar 

  35. Camp, R. L., Dolled-Filhart, M., King, B. L. & Rimm, D. L. Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res. 63, 1445–1448 (2003).

    CAS  PubMed  Google Scholar 

  36. Gould Rothberg, B. E. et al. Melanoma prognostic model using tissue microarrays and genetic algorithms. J. Clin. Oncol. 27, 5772–5780 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. Hu, S., Loo, J. A. & Wong, D. T. Human body fluid proteome analysis. Proteomics 6, 6326–6353 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson, N. L. et al. The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol. Cell. Proteomics 3, 311–326 (2004).

    CAS  PubMed  Google Scholar 

  39. Hanash, S. Disease proteomics. Nature. 422, 226–232 (2003).

    CAS  PubMed  Google Scholar 

  40. Borrebaeck, C. A. & Wingren, C. High-throughput proteomics using antibody microarrays: an update. Expert Rev. Mol. Diagn. 7, 673–686 (2007).

    CAS  PubMed  Google Scholar 

  41. Kingsmore, S. F. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nature Rev. Drug Discov. 5, 310–320 (2006).

    CAS  Google Scholar 

  42. Wingren, C. & Borrebaeck, C. A. Antibody microarray analysis of directly labelled complex proteomes. Curr. Opin. Biotechnol. 19, 55–61 (2008).

    CAS  PubMed  Google Scholar 

  43. Chen, S. & Haab, B. B. Analysis of glycans on serum proteins using antibody microarrays. Methods Mol. Biol. 520, 39–58 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Narimatsu, H. et al. A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. FEBS J. 277, 95–105 (2010).

    CAS  PubMed  Google Scholar 

  45. Schwenk, J. M., Gry, M., Rimini, R., Uhlen, M. & Nilsson, P. Antibody suspension bead arrays within serum proteomics. J. Proteome Res. 7, 3168–3179 (2008).

    CAS  PubMed  Google Scholar 

  46. Gowan, S. M. et al. Application of meso scale technology for the measurement of phosphoproteins in human tumor xenografts. Assay Drug Dev. Technol. 5, 391–401 (2007).

    CAS  PubMed  Google Scholar 

  47. Leng, S. X. et al. ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J. Gerontol. A Biol. Sci. Med. Sci. 63, 879–884 (2008).

    PubMed  Google Scholar 

  48. Morgan, E. et al. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin. Immunol. 110, 252–266 (2004).

    CAS  PubMed  Google Scholar 

  49. Elshal, M. F. & McCoy, J. P. Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods 38, 317–323 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Khan, S. S., Smith, M. S., Reda, D., Suffredini, A. F. & McCoy, J. P. Jr. Multiplex bead array assays for detection of soluble cytokines: comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytometry B Clin. Cytom. 61, 35–39 (2004).

    PubMed  Google Scholar 

  51. Prabhakar, U. et al. Validation and comparative analysis of a multiplexed assay for the simultaneous quantitative measurement of Th1/Th2 cytokines in human serum and human peripheral blood mononuclear cell culture supernatants. J. Immunol. Methods 291, 27–38 (2004).

    CAS  PubMed  Google Scholar 

  52. Spurrier, B., Ramalingam, S. & Nishizuka, S. Reverse-phase protein lysate microarrays for cell signaling analysis. Nature Protoc. 3, 1796–1808 (2008). This paper describes the basis of how RPPAs can be used for pathway diagnostics.

    Google Scholar 

  53. Berg, D., Hipp, S., Malinowsky, K., Bollner, C. & Becker, K. F. Molecular profiling of signalling pathways in formalin-fixed and paraffin-embedded cancer tissues. Eur. J. Cancer 46, 47–55 (2010).

    CAS  PubMed  Google Scholar 

  54. Espina, V. et al. A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol. Cell. Proteomics 7, 1998–2018 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chung, J. L., Lee, S. J., Kris, Y., Braunschweig, T. & Hewitt, S. M. A well-based reverse-phase protein array applicable to extracts from formalin-fixed paraffin-embedded tissue. Proteomics Clin. Appl. 2, 1539–1547 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pawlak, M. et al. Zeptosens' protein microarrays: a novel high performance microarray platform for low abundance protein analysis. Proteomics 2, 383–393 (2002).

    CAS  PubMed  Google Scholar 

  57. Dupuy, L. et al. A highly sensitive near-infrared fluorescent detection method to analyze signalling pathways by reverse-phase protein array. Proteomics 9, 5446–5454 (2009).

    CAS  PubMed  Google Scholar 

  58. Brennan, D. J. et al. Application of DNA microarray technology in determining breast cancer prognosis and therapeutic response. Expert Opin. Biol. Ther. 5, 1069–1083 (2005).

    CAS  PubMed  Google Scholar 

  59. Brennan, D. J. & Gallagher, W. M. Prognostic ability of a panel of immunohistochemistry markers - retailoring of an 'old solution'. Breast Cancer Res. 10, 102 (2008).

    PubMed  PubMed Central  Google Scholar 

  60. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002). This seminal paper describes the 70 gene prognostic signature for breast cancer that is now the basis of the MammaPrint assay.

    CAS  PubMed  Google Scholar 

  61. Glas, A. M. et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7, 278 (2006).

    PubMed  PubMed Central  Google Scholar 

  62. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004). This paper describes the Oncotype Dx assay.

    CAS  PubMed  Google Scholar 

  63. Sparano, J. TAILORx: trial assigning individualized options for treatment (Rx). Clin. Breast Cancer 7, 347–350 (2006).

    PubMed  Google Scholar 

  64. Buyse, M. et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Inst. 98, 1183–1192 (2006).

    CAS  PubMed  Google Scholar 

  65. Tan, E. H. et al. A multicentre phase II gene expression profiling study of putative relationships between tumour biomarkers and clinical response with erlotinib in non-small-cell lung cancer. Ann. Oncol. 21, 217–222 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Chen, H. Y. et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N. Engl. J. Med. 356, 11–20 (2007).

    CAS  PubMed  Google Scholar 

  67. Guo, N. L. et al. Confirmation of gene expression-based prediction of survival in non-small cell lung cancer. Clin. Cancer Res. 14, 8213–8220 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hao, J. M. et al. A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J. Pathol. 220, 475–489 (2010).

    CAS  PubMed  Google Scholar 

  69. Garman, K. S. et al. A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities. Proc. Natl Acad. Sci. USA. 105, 19432–19437 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Barrier, A. et al. Stage II colon cancer prognosis prediction by tumor gene expression profiling. J. Clin. Oncol. 24, 4685–4691 (2006).

    CAS  PubMed  Google Scholar 

  71. Cheville, J. C. et al. Gene panel model predictive of outcome in men at high-risk of systemic progression and death from prostate cancer after radical retropubic prostatectomy. J. Clin. Oncol. 26, 3930–3936 (2008).

    PubMed  PubMed Central  Google Scholar 

  72. Kosari, F. et al. Identification of prognostic biomarkers for prostate cancer. Clin. Cancer Res. 14, 1734–1743 (2008).

    CAS  PubMed  Google Scholar 

  73. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    CAS  PubMed  Google Scholar 

  74. Rosenwald, A. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 1937–1947 (2002). This seminal paper describes the classification of B cell lymphoma.

    PubMed  Google Scholar 

  75. Lenz, G. et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 359, 2313–2323 (2008).

    CAS  PubMed  Google Scholar 

  76. Whiteaker, J. R. et al. Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Anal. Biochem. 362, 44–54 (2007).

    CAS  PubMed  Google Scholar 

  77. Anderson, N. L. et al. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J. Proteome Res. 3, 235–244 (2004).

    CAS  PubMed  Google Scholar 

  78. Ingvarsson, J. et al. Detection of pancreatic cancer using antibody microarray-based serum protein profiling. Proteomics 8, 2211–2219 (2008).

    CAS  PubMed  Google Scholar 

  79. Orchekowski, R. et al. Antibody microarray profiling reveals individual and combined serum proteins associated with pancreatic cancer. Cancer Res. 65, 11193–11202 (2005).

    CAS  PubMed  Google Scholar 

  80. Carlsson, A. et al. Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays. Eur. J. Cancer. 44, 472–480 (2008).

    CAS  PubMed  Google Scholar 

  81. Schroder, C. et al. Dual-color proteomic profiling of complex samples with a microarray of 810 cancer-related antibodies. Mol. Cell. Proteomics 9, 1271–1280 (2010).

    PubMed  PubMed Central  Google Scholar 

  82. Kashani-Sabet, M. et al. A multi-marker assay to distinguish malignant melanomas from benign nevi. Proc. Natl Acad. Sci. USA 106, 6268–6272 (2009). This paper describes an IHC assay for the diagnosis of malignant melanoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ring, B. Z. et al. A novel five-antibody immunohistochemical test for subclassification of lung carcinoma. Mod. Pathol. 22, 1032–1043 (2009).

    CAS  PubMed  Google Scholar 

  84. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    CAS  PubMed  Google Scholar 

  85. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 304, 1497–1500 (2004).

    CAS  PubMed  Google Scholar 

  86. Nielsen, T. et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10, 5367–5374 (2004).

    CAS  PubMed  Google Scholar 

  87. Carey, L. et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295, 2492–2502 (2006).

    CAS  PubMed  Google Scholar 

  88. Fan, C. et al. Concordance among gene-expression-based predictors for breast cancer. N. Engl. J. Med. 355, 560–569 (2006).

    CAS  PubMed  Google Scholar 

  89. Ring, B. et al. Novel prognostic immunohistochemical biomarker panel for estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3039–3047 (2006). This paper describes a five marker IHC prognostic assay for breast cancer, which is an example of integrating transcriptomic and proteomic data.

    CAS  PubMed  Google Scholar 

  90. Ross, D. T. et al. Chemosensitivity and stratification by a five monoclonal antibody immunohistochemistry test in the NSABP B14 and B20 trials. Clin. Cancer Res. 14, 6602–6609 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Crabb, S. J. et al. Can clinically relevant prognostic subsets of breast cancer patients with four or more involved axillary lymph nodes be identified through immunohistochemical biomarkers: a tissue microarray feasibility study. Breast Cancer Res. 10, R6 (2008).

    PubMed  PubMed Central  Google Scholar 

  92. Charpin, C. et al. A signature predictive of disease outcome in breast carcinomas, identified by quantitative immunocytochemical assays. Int. J. Cancer 124, 2124–2134 (2009).

    CAS  PubMed  Google Scholar 

  93. Kim, H. L. et al. Using protein expressions to predict survival in clear cell renal carcinoma. Clin. Cancer Res. 10, 5464–5471 (2004).

    CAS  PubMed  Google Scholar 

  94. Klatte, T. et al. Molecular signatures of localized clear cell renal cell carcinoma to predict disease-free survival after nephrectomy. Cancer Epidemiol. Biomarkers Prev. 18, 894–900 (2009).

    CAS  PubMed  Google Scholar 

  95. Kobunai, T., Watanabe, T., Yamamoto, Y. & Eshima, K. The frequency of KRAS mutation detection in human colon carcinoma is influenced by the sensitivity of assay methodology: a comparison between direct sequencing and real-time PCR. Biochem. Biophys. Res. Commun. 395, 158–162 (2010).

    CAS  PubMed  Google Scholar 

  96. Banck, M. S. & Grothey, A. Biomarkers of resistance to epidermal growth factor receptor monoclonal antibodies in patients with metastatic colorectal cancer. Clin. Cancer Res. 15, 7492–7501 (2009).

    CAS  PubMed  Google Scholar 

  97. Siena, S., Sartore-Bianchi, A., Di Nicolantonio, F., Balfour, J. & Bardelli, A. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J. Natl Cancer Inst. 101, 1308–1324 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Weinstein, I. B. Cancer. Addiction to oncogenes - the Achilles heal of cancer. Science 297, 63–64 (2002).

    CAS  PubMed  Google Scholar 

  99. Sawyers, C. L. Shifting paradigms: the seeds of oncogene addiction. Nature Med. 15, 1158–1161 (2009).

    CAS  PubMed  Google Scholar 

  100. Thomas, G. V. et al. Antibody-based profiling of the phosphoinositide 3-kinase pathway in clinical prostate cancer. Clin. Cancer Res. 10, 8351–8356 (2004).

    CAS  PubMed  Google Scholar 

  101. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002). This is a key paper outlining why the identification of the correct patient cohort for molecular therapeutics is of utmost importance.

    CAS  PubMed  Google Scholar 

  102. Wan, P. T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    CAS  PubMed  Google Scholar 

  103. Amaravadi, R. K. et al. Phase II trial of temozolomide and sorafenib in advanced melanoma patients with or without brain metastases. Clin. Cancer Res. 15, 7711–7718 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hauschild, A. et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J. Clin. Oncol. 27, 2823–2830 (2009).

    CAS  PubMed  Google Scholar 

  105. McDermott, D. F. et al. Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. J. Clin. Oncol. 26, 2178–2185 (2008).

    CAS  PubMed  Google Scholar 

  106. Flaherty, K. T. et al. Phase I study of PLX4032: proof of concept for V600E BRAF mutation as a therapeutic target in human cancer. J. Clin. Oncol. Abstr. 27, 9000 (2009).

    Google Scholar 

  107. Hatzivassiliou, G. et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431–435 (2010).

    CAS  PubMed  Google Scholar 

  108. Tomita, Y. et al. Prognostic significance of activated AKT expression in soft-tissue sarcoma. Clin. Cancer Res. 12, 3070–3077 (2006).

    CAS  PubMed  Google Scholar 

  109. Capodanno, A. et al. Dysregulated PI3K/Akt/PTEN pathway is a marker of a short disease-free survival in node-negative breast carcinoma. Hum. Pathol. 40, 1408–1417 (2009).

    CAS  PubMed  Google Scholar 

  110. Abdeen, A. et al. Correlation between clinical outcome and growth factor pathway expression in osteogenic sarcoma. Cancer. 115, 5243–5250 (2009).

    PubMed  Google Scholar 

  111. Yoshizawa, A. et al. Overexpression of phospho-eIF4E is associated with survival through AKT pathway in non-small cell lung cancer. Clin. Cancer Res. 16, 240–248 (2010). This paper describes an example of IHC-based pathway analysis.

    CAS  PubMed  Google Scholar 

  112. Tsavachidou-Fenner, D. et al. Gene and protein expression markers of response to combined antiangiogenic and epidermal growth factor targeted therapy in renal cell carcinoma. Ann. Oncol. 20 Jan 2010 (doi:10.1093/annonc/mdp600).

  113. Uemura, N. et al. Antibody-based proteomics for esophageal cancer: identification of proteins in the nuclear factor-κB pathway and mitotic checkpoint. Cancer science. 100, 1612–1622 (2009).

    CAS  PubMed  Google Scholar 

  114. Dahinden, C. et al. Mining tissue microarray data to uncover combinations of biomarker expression patterns that improve intermediate staging and grading of clear cell renal cell cancer. Clin. Cancer Res. 16, 88–98 (2010).

    CAS  PubMed  Google Scholar 

  115. Pernas, F. G. et al. Proteomic signatures of epidermal growth factor receptor and survival signal pathways correspond to gefitinib sensitivity in head and neck cancer. Clin. Cancer Res. 15, 2361–2372 (2009). This paper describes an example of combining RPPAs and IHC to carry out pathway diagnostics and identify predictive biomarkers.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Gutman, S. & Kessler, L. The US Food and Drug Administration perspective on cancer biomarker development. Nature Rev. Cancer 6, 565–571 (2006).

    CAS  Google Scholar 

  117. Sawyers, C. L. The cancer biomarker problem. Nature 452, 548–552 (2008).

    CAS  PubMed  Google Scholar 

  118. Bose, D. et al. Vascular endothelial growth factor targeted therapy in the perioperative setting: implications for patient care. Lancet Oncol. 11, 373–382 (2010).

    CAS  PubMed  Google Scholar 

  119. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nature Rev. Cancer 8, 592–603 (2008).

    CAS  Google Scholar 

  120. Azam, F., Mehta, S. & Harris, A. L. Mechanisms of resistance to antiangiogenesis therapy. Eur. J. Cancer 46, 1323–1332 (2010).

    CAS  PubMed  Google Scholar 

  121. Byers, L. A. et al. Serum signature of hypoxia-regulated factors is associated with progression after induction therapy in head and neck squamous cell cancer. Mol. Cancer Ther. 9, 1755–1763 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kopetz, S. et al. Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J. Clin. Oncol. 28, 453–459 (2010). This paper describes the utility of multiplex bead assays to predictive markers for anti-angiogenic treatment.

    CAS  PubMed  Google Scholar 

  123. Nikolinakos, P. G. et al. Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Res. 70, 2171–2179 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kobel, M. et al. Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med. 5, e232 (2008).

    PubMed  PubMed Central  Google Scholar 

  125. Bossuyt, P. M. et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann. Intern. Med. 138, W1–W12 (2003).

    PubMed  Google Scholar 

  126. Berglund, L. et al. A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol. Cell. Proteomics 7, 2019–2027 (2008).

    CAS  PubMed  Google Scholar 

  127. Berglund, L. et al. A whole-genome bioinformatics approach to selection of antigens for systematic antibody generation. Proteomics 8, 2832–2839 (2008).

    CAS  PubMed  Google Scholar 

  128. Nilsson, P. et al. Towards a human proteome atlas: high-throughput generation of mono-specific antibodies for tissue profiling. Proteomics 5, 4327–4337 (2005).

    CAS  PubMed  Google Scholar 

  129. Kampf, C. et al. Antibody-based tissue profiling as a tool for clinical proteomics. Clin. Proteomics 1, 285–299 (2004).

    CAS  Google Scholar 

  130. Andersson, A. C. et al. Analysis of protein expression in cell microarrays: a tool for antibody-based proteomics. J. Histochem. Cytochem. 54, 1413–1423 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Barbe, L. et al. Toward a confocal subcellular atlas of the human proteome. Mol. Cell. Proteomics 7, 499–508 (2008).

    CAS  PubMed  Google Scholar 

  132. Björling, E. et al. A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues. Mol. Cell. Proteomics 7, 825–844 (2008).

    PubMed  Google Scholar 

  133. Chung, J. et al. Transfer and multiplex immunoblotting of a paraffin embedded tissue. Proteomics 6, 767–774 (2006).

    CAS  PubMed  Google Scholar 

  134. Paweletz, C. P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    CAS  PubMed  Google Scholar 

  135. Petricoin, E. F., Zoon, K. C., Kohn, E. C., Barrett, J. C. & Liotta, L. A. Clinical proteomics: translating benchside promise into bedside reality. Nature Rev. Drug Discov. 1, 683–695 (2002).

    CAS  Google Scholar 

  136. Haab, B. B., Dunham, M. J. & Brown, P. O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, research0004.1–research0004.13 (2001).

  137. Lizardi, P. M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet. 19, 225–232 (1998).

    CAS  PubMed  Google Scholar 

  138. Rockberg, J., Lofblom, J., Hjelm, B., Uhlen, M. & Stahl, S. Epitope mapping of antibodies using bacterial surface display. Nature Methods 5, 1039–1045 (2008).

    CAS  PubMed  Google Scholar 

  139. van Zonneveld, A. J., van den Berg, B. M., van Meijer, M. & Pannekoek, H. Identification of functional interaction sites on proteins using bacteriophage-displayed random epitope libraries. Gene 167, 49–52 (1995).

    CAS  PubMed  Google Scholar 

  140. Christmann, A., Wentzel, A., Meyer, C., Meyers, G. & Kolmar, H. Epitope mapping and affinity purification of monospecific antibodies by Escherichia coli cell surface display of gene-derived random peptide libraries. J. Immunol. Methods 257, 163–173 (2001).

    CAS  PubMed  Google Scholar 

  141. Petersen, G., Song, D., Hugle-Dorr, B., Oldenburg, I. & Bautz, E. K. Mapping of linear epitopes recognized by monoclonal antibodies with gene-fragment phage display libraries. Mol. Gen. Genet. 249, 425–431 (1995).

    CAS  PubMed  Google Scholar 

  142. Stadler, C., Skogs, M., Brismar, H., Uhlen, M. & Lundberg, E. A single fixation protocol for proteome-wide immunofluorescence localization studies. J. Proteomics 73, 1067–1078 (2010).

    CAS  PubMed  Google Scholar 

  143. Paavilainen, L. et al. The impact of tissue fixatives on morphology and antibody-based protein profiling in tissues and cells. J. Histochem. Cytochem. 58, 237–246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge funding from Enterprise Ireland, the Health Research Board of Ireland (Programme Grant: Breast Cancer Metastasis: Biomarkers and Functional Mediators and a HRB Career Development Fellowship awarded to D.P.O'C.), the European Commission (in the context of the Marie Curie Industry-Academic Partnership and Pathways programme, Target-Melanoma), Science Foundation Ireland (in the context of the Strategic Research Cluster, Molecular Therapeutics for Cancer Ireland) and the Knut and Alice Wallenberg Foundation. The UCD Conway Institute is funded by the Programme for Research in Third Level Institutions, as administered by the Higher Education Authority of Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Gallagher.

Ethics declarations

Competing interests

D.J.B., E.R. and W.M.G. are co-inventors of a pending patent application relating to automated image analysis in oncology.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

bevacizumab

erlotinib

fluorouracil

gefitinib

imatinib

irinotecan

leucovorin

pazopanib

PLX4032

sorafenib

Pathway Interaction Database 

AKT

EGFR

ERK

PTEN

STAT3

FURTHER INFORMATION

William M. Gallagher's homepage

CPTAC

Human Protein Atlas

Glossary

Reverse phase protein array

RPPA. Protein lysate dot blot in a high-density format on a solid surface that allows for multiple samples to be probed with the same antibody, or other affinity reagent, simultaneously.

Two-dimensional electrophoresis

2DE. Gel-based technique for the separation of proteins by isoelectric point in the first dimension (achieved by isoelectric focusing), followed by mass in the second dimension (achieved by SDS–PAGE). A higher resolution of protein separation is achieved compared with single dimension approaches.

Multi-dimensional liquid chromatography

Chomatographic separation in at least two dimensions, for example, reverse-phase chromatography followed by ion-exchange chromatography. Using additional dimensions increases the resolution of separation.

Tandem mass spectrometry

Often referred to as MS/MS, it uses two linked mass spectrometers to measure small amounts of proteins. Analytes are separated according to their mass and charge, with samples sorted and weighed in the first mass spectrometer, then fragmented in a collision cell, and fragments sorted and weighed in the second mass spectrometer.

Epitope mapping

Systematic identification and characterization of the minimum recognition domain for antibodies.

Sandwich-based assay

Antigen detection using surface-bound capture antibodies, followed by the application of the sample and subsequent detection using a second antibody raised against an alternative epitope on the same target protein.

Unsupervised analysis

A form of gene expression analysis that involves the discovery of empirical structure (patterns) in a given data set without taking into account any prior knowledge of the underlying biology. Gene expression patterns that are discovered in this manner should be unbiased.

Retrospective cohort

A study in which the medical records and possibly also the previous tissue specimens of groups of patients with a specific diagnosis (for example, breast cancer) are collected.

Prospective trial

A trial in which the participants or patients are identified, followed over time and the effects of different conditions on their eventual outcome are measured.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennan, D., O'Connor, D., Rexhepaj, E. et al. Antibody-based proteomics: fast-tracking molecular diagnostics in oncology. Nat Rev Cancer 10, 605–617 (2010). https://doi.org/10.1038/nrc2902

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2902

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer