Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents

Key Points

  • Human tumour-derived cell lines have historically had a very important role in the discovery and development of new cancer therapeutics.

  • The National Cancer Institute 60 (NCI60) platform, which introduced the concept of high-throughput cell-based profiling, was crucial not only to the development of technologies that are still being used in various high-throughput discovery platforms, but also to the discovery of several agents that have subsequently been found to demonstrate therapeutic efficacy.

  • Subsequently developed genomic analysis technologies have provided an opportunity to link variable treatment responses to specific underlying genotypes, highlighting the enormous genomic heterogeneity in human cancer and its role in the response to therapy, and revealing the need to reconsider the scale of cell line-based studies to assess the activity of candidate anticancer agents.

  • Consequently, much larger panels of cancer cell lines are beginning to be exploited for the purpose of identifying genomic determinants of drug sensitivity, and several studies have validated the usefulness of this approach to reveal clinically informative biomarkers.

  • This development, together with additional technological developments involving various three-dimensional culture systems and more sophisticated xenograft models, has recently reinvigoratedthe application of cancer cell lines to the analysis of drug efficacy in cancer.

  • Although throughput, as well as the physiological relevance of some of these approaches, remains a limitation of these systems, there seems to be little doubt that tumour-derived cell lines will continue to have a vital role in the preclinical assessment of new candidate anticancer agents.

Abstract

Efforts to discover new cancer drugs and predict their clinical activity are limited by the fact that laboratory models to test drug efficacy do not faithfully recapitulate this complex disease. One important model system for evaluating candidate anticancer agents is human tumour-derived cell lines. Although cultured cancer cells can exhibit distinct properties compared with their naturally growing counterparts, recent technologies that facilitate the parallel analysis of large panels of such lines, together with genomic technologies that define their genetic constitution, have revitalized efforts to use cancer cell lines to assess the clinical utility of new investigational cancer drugs and to discover predictive biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional cell culture assays.

Similar content being viewed by others

References

  1. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nature Rev. Cancer 6, 813–823 (2006). A comprehensive review of the NCI60 anticancer drug discovery programme, highlighting its history, methodology and major achievements.

    Article  CAS  Google Scholar 

  2. Sledge, G. W. Jr, Loehrer, P. J. Sr, Roth, B. J. & Einhorn, L. H. Cisplatin as first-line therapy for metastatic breast cancer. J. Clin. Oncol. 6, 1811–1814 (1988).

    Article  PubMed  Google Scholar 

  3. Bezwoda, W. R., Seymour, L. & Ariad, S. High-dose etoposide in treatment of metastatic breast cancer. Oncology 49, 104–107 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Margolin, K. A. et al. Effective initial therapy of advanced breast cancer with fluorouracil and high-dose, continuous infusion calcium leucovorin. J. Clin. Oncol. 10, 1278–1283 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Gershenson, D. M. et al. A phase I study of a daily x3 schedule of intravenous vinorelbine for refractory epithelial ovarian cancer. Gynecol. Oncol. 70, 404–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Muggia, F. M. et al. Phase III randomized study of cisplatin versus paclitaxel versus cisplatin and paclitaxel in patients with suboptimal stage III or IV ovarian cancer: a gynecologic oncology group study. J. Clin. Oncol. 18, 106–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Rossi, A. et al. Single agent vinorelbine as first-line chemotherapy in elderly patients with advanced breast cancer. Anticancer Res. 23, 1657–1664 (2003).

    CAS  PubMed  Google Scholar 

  8. Kornblith, P. et al. In vitro responses of ovarian cancers to platinums and taxanes. Anticancer Res. 23, 543–548 (2003).

    CAS  PubMed  Google Scholar 

  9. Kornblith, P. et al. Breast cancer—response rates to chemotherapeutic agents studied in vitro. Anticancer Res. 23, 3405–3411 (2003).

    CAS  PubMed  Google Scholar 

  10. Kornblith, P. et al. Differential in vitro effects of chemotherapeutic agents on primary cultures of human ovarian carcinoma. Int. J. Gynecol. Cancer 14, 607–615 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Kris, M. G. et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290, 2149–2158 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Fukuoka, M. et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J. Clin. Oncol. 21, 2237–2246 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Cohen, M. H. et al. United States Food and Drug Administration Drug Approval summary: Gefitinib (ZD1839; Iressa) tablets. Clin. Cancer Res. 10, 1212–1218 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Thatcher, N. et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366, 1527–1537 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Shepherd, F. A. et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Nieto, J., Grossbard, M. L. & Kozuch, P. Metastatic pancreatic cancer 2008: is the glass less empty? Oncologist 13, 562–576 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Saltz, L. B. et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 22, 1201–1208 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Vermorken, J. B. et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J. Clin. Oncol. 25, 2171–2177 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. William, W. N. Jr, Kim, E. S. & Herbst, R. S. Cetuximab therapy for patients with advanced squamous cell carcinomas of the head and neck. Nature Clin. Pract Oncol. 6, 132–133 (2009).

    Article  CAS  Google Scholar 

  21. Van Cutsem, E. et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol. 25, 1658–1664 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Cobleigh, M. A. et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J. Clin. Oncol. 17, 2639–2648 (1999). One of the first large-scale clinical studies that highlighted the value of molecular markers in the selection of patients for treatment with targeted anticancer therapeutics.

    Article  CAS  PubMed  Google Scholar 

  23. Vogel, C. L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 719–726 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Johnston, S. R. & Leary, A. Lapatinib: a novel EGFR/HER2 tyrosine kinase inhibitor for cancer. Drugs Today (Barc) 42, 441–453 (2006).

    Article  CAS  Google Scholar 

  25. Kaufman, B. et al. Lapatinib monotherapy in patients with HER2-overexpressing relapsed or refractory inflammatory breast cancer: final results and survival of the expanded HER2+ cohort in EGF103009, a phase II study. Lancet Oncol. 10, 581–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368, 1329–1338 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. O'Brien, S. G. et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 348, 994–1004 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Dagher, R. et al. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin. Cancer Res. 8, 3034–3038 (2002).

    CAS  PubMed  Google Scholar 

  32. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Hochhaus, A. et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood 109, 2303–2309 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. le Coutre, P. et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 111, 1834–1839 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Weinstein, I. B. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297, 63–64 (2002). A highly cited commentary that lays the theoretical framework for the concept of oncogene addiction, which forms the basis of many strategies for the modern development of anticancer therapeutics.

    Article  CAS  PubMed  Google Scholar 

  37. Weinstein, I. B. & Joe, A. K. Mechanisms of disease: Oncogene addiction—a rationale for molecular targeting in cancer therapy. Nature Clin. Pract Oncol. 3, 448–457 (2006).

    Article  CAS  Google Scholar 

  38. Sharma, S. V. et al. A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 10, 425–435 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma, S. V. & Settleman, J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 21, 3214–3231 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Kaelin, W. G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nature Rev. Cancer 5, 689–698 (2005).

    Article  CAS  Google Scholar 

  41. Garraway, L. A. & Sellers, W. R. Lineage dependency and lineage-survival oncogenes in human cancer. Nature Rev. Cancer 6, 593–602 (2006).

    Article  CAS  Google Scholar 

  42. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nature Rev. Cancer 7, 169–181 (2007).

    Article  CAS  Google Scholar 

  44. Linardou, H., Dahabreh, I. J., Bafaloukos, D., Kosmidis, P. & Murray, S. Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nature Rev. Clin. Oncol. 6, 352–366 (2009).

    Article  CAS  Google Scholar 

  45. Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006). This study describes a genomic analysis of primary breast tumours and tumour-derived cell lines, demonstrating the remarkable conservation of genomic features and drug sensitivity in cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sos, M. L. et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J. Clin. Invest. 119, 1727–1740 (2009). This report illustrates the utility of cell line profiling to reveal genotype-associated drug responses in lung cancer-derived cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McDermott, U., Sharma, S. V. & Settleman, J. High-throughput lung cancer cell line screening for genotype-correlated sensitivity to an EGFR kinase inhibitor. Meth. Enzymol. 438, 331–341 (2008).

    Article  CAS  Google Scholar 

  48. McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sci. USA 104, 19936–19941 (2007). A study using large cell line panels (CMT1000) to explore the genomic basis of drug sensitivity, with particular emphasis on small-molecule selective kinase inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McDermott, U. et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res. 68, 3389–3395 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Rodig, S. J. et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin. Cancer Res. 15, 5216–5223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shaw, A. T. et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J. Clin. Oncol. 27, 4247–4253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McDermott, U. et al. Ligand-dependent platelet-derived growth factor receptor (PDGFR)-α activation sensitizes rare lung cancer and sarcoma cells to PDGFR kinase inhibitors. Cancer Res. 69, 3937–3946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Rosen, J. M. & Jordan, C. T. The increasing complexity of the cancer stem cell paradigm. Science 324, 1670–1673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Trumpp, A. & Wiestler, O. D. Mechanisms of disease: cancer stem cells—targeting the evil twin. Nature Clin. Pract Oncol. 5, 337–347 (2008).

    Article  CAS  Google Scholar 

  56. Irish, J. M., Kotecha, N. & Nolan, G. P. Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nature Rev. Cancer 6, 146–155 (2006).

    Article  CAS  Google Scholar 

  57. Brock, A., Chang, H. & Huang, S. Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nature Rev. Genet. 10, 336–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, J., Odenike, O. & Rowley, J. D. Leukaemogenesis: more than mutant genes. Nature Rev. Cancer 10, 23–36 (2010).

    Article  CAS  Google Scholar 

  59. Lin, W. M. et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 68, 664–673 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Finn, R. S. et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 11, R77 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Heiser, L. M. et al. Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Genome Biol. 10, R31 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Mirzoeva, O. K. et al. Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res. 69, 565–572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuo, W. L. et al. A systems analysis of chemosensitivity of breast cancer cells to the polyamine analogue PG-11047. BMC Med. 7, 77 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137, 821–834 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Yagoda, N. et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 864–868 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Borisy, A. A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl Acad. Sci. USA 100, 7977–7982 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lehar, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nature Biotechnol. 27, 659–666 (2009). A study demonstrating the feasibility of testing drug combinations in a high-throughput fashion.

    Article  CAS  Google Scholar 

  72. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007). This report describes studies using an in vitro cell culture model to reveal a clinically relevant mechanism of acquired resistance to a targeted small-molecule tyrosine kinase inhibitor in patients with lung cancer.

    Article  CAS  PubMed  Google Scholar 

  73. Montagut, C. et al. Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res. 68, 4853–4861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Drexler, H. G. et al. p53 alterations in human leukemia-lymphoma cell lines: in vitro artifact or prerequisite for cell immortalization? Leukemia 14, 198–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, F. et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl Acad. Sci. USA 95, 14821–14826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jacks, T. & Weinberg, R. A. Taking the study of cancer cell survival to a new dimension. Cell 111, 923–925 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Abbott, A. Cell culture: biology's new dimension. Nature 424, 870–872 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell Biol. 7, 211–224 (2006).

    Article  CAS  Google Scholar 

  80. Yamada, K. M. & Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610 (2007). A comprehensive review of the use of 3D cultures to uncover aspects of tumour biology and metastases.

    Article  CAS  PubMed  Google Scholar 

  81. Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biol. 5, 711–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L. A. Spheroid-based drug screen: considerations and practical approach. Nature Protoc 4, 309–324 (2009).

    Article  CAS  Google Scholar 

  84. Hollingshead, M. G. et al. In vivo cultivation of tumor cells in hollow fibers. Life Sci. 57, 131–141 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Gorelik, E. et al. Microencapsulated tumor assay: new short-term assay for in vivo evaluation of the effects of anticancer drugs on human tumor cell lines. Cancer Res. 47, 5739–5747 (1987).

    CAS  PubMed  Google Scholar 

  86. Lanza, R. P. et al. Xenotransplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc. Natl Acad. Sci. USA 88, 11100–11104 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lacy, P. E., Hegre, O. D., Gerasimidi-Vazeou, A., Gentile, F. T. & Dionne, K. E. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254, 1782–1784 (1991).

    Article  CAS  PubMed  Google Scholar 

  88. Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424–1431 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Decker, S., Hollingshead, M., Bonomi, C. A., Carter, J. P. & Sausville, E. A. The hollow fibre model in cancer drug screening: the NCI experience. Eur. J. Cancer 40, 821–826 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Hall, L. A. et al. The hollow fiber assay: continued characterization with novel approaches. Anticancer Res. 20, 903–911 (2000).

    CAS  PubMed  Google Scholar 

  91. Gudjonsson, T., Ronnov-Jessen, L., Villadsen, R., Bissell, M. J. & Petersen, O. W. To create the correct microenvironment: three-dimensional heterotypic collagen assays for human breast epithelial morphogenesis and neoplasia. Methods 30, 247–255 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nelson, C. M. & Bissell, M. J. Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation. Semin. Cancer Biol. 15, 342–352 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods 4, 359–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Friedrich, J., Ebner, R. & Kunz-Schughart, L. A. Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? Int. J. Radiat. Biol. 83, 849–871 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Ballangrud, A. M. et al. Response of LNCaP spheroids after treatment with an α-particle emitter (213Bi)-labeled anti-prostate-specific membrane antigen antibody (J591). Cancer Res. 61, 2008–2014 (2001).

    CAS  PubMed  Google Scholar 

  96. Carlsson, J. & Acker, H. Relations between pH, oxygen partial pressure and growth in cultured cell spheroids. Int. J. Cancer 42, 715–720 (1988).

    Article  CAS  PubMed  Google Scholar 

  97. Dubessy, C., Merlin, J. M., Marchal, C. & Guillemin, F. Spheroids in radiobiology and photodynamic therapy. Crit. Rev. Oncol. Hematol. 36, 179–192 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Durand, R. E. & Olive, P. L. Resistance of tumor cells to chemo- and radiotherapy modulated by the three-dimensional architecture of solid tumors and spheroids. Methods Cell Biol. 64, 211–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Khaitan, D., Chandna, S., Arya, M. B. & Dwarakanath, B. S. Establishment and characterization of multicellular spheroids from a human glioma cell line; implications for tumor therapy. J. Transl. Med. 4, 12 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Mueller-Klieser, W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol. 273, C1109–C1123 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F. & Ebner, R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J. Biomol. Screen 9, 273–285 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Frankel, A., Buckman, R. & Kerbel, R. S. Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res. 57, 2388–2393 (1997).

    CAS  PubMed  Google Scholar 

  103. dit Faute, M. A. et al. Distinctive alterations of invasiveness, drug resistance and cell-cell organization in 3D-cultures of MCF-7, a human breast cancer cell line, and its multidrug resistant variant. Clin. Exp. Metastasis 19, 161–168 (2002).

    Article  PubMed  Google Scholar 

  104. Hazlehurst, L. A., Landowski, T. H. & Dalton, W. S. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene 22, 7396–7402 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Serebriiskii, I., Castello-Cros, R., Lamb, A., Golemis, E. A. & Cukierman, E. Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. Matrix Biol. 27, 573–585 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. David, L. et al. Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta Biomater 4, 256–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Frankel, A., Man, S., Elliott, P., Adams, J. & Kerbel, R. S. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin. Cancer Res. 6, 3719–3728 (2000).

    CAS  PubMed  Google Scholar 

  108. Eshleman, J. S. et al. Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res. 62, 7291–7297 (2002).

    CAS  PubMed  Google Scholar 

  109. Liu, M. et al. Antitumor activity of rapamycin in a transgenic mouse model of ErbB2-dependent human breast cancer. Cancer Res. 65, 5325–5336 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Howes, A. L. et al. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol. Cancer Ther. 6, 2505–2514 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Barbone, D., Yang, T. M., Morgan, J. R., Gaudino, G. & Broaddus, V. C. Mammalian target of rapamycin contributes to the acquired apoptotic resistance of human mesothelioma multicellular spheroids. J. Biol. Chem. 283, 13021–13030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Friedrich, J. et al. A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J. Biomol. Screen 12, 925–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Mueller-Klieser, W. Multicellular spheroids. A review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol. 113, 101–122 (1987).

    Article  CAS  PubMed  Google Scholar 

  114. Poland, J. et al. Comparison of protein expression profiles between monolayer and spheroid cell culture of HT-29 cells revealed fragmentation of CK18 in three-dimensional cell culture. Electrophoresis 23, 1174–1184 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Oloumi, A., Lam, W., Banath, J. P. & Olive, P. L. Identification of genes differentially expressed in V79 cells grown as multicell spheroids. Int. J. Radiat. Biol. 78, 483–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Dardousis, K. et al. Identification of differentially expressed genes involved in the formation of multicellular tumor spheroids by HT-29 colon carcinoma cells. Mol. Ther. 15, 94–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Steel, G. G., Courtenay, V. D. & Peckham, M. J. The response to chemotherapy of a variety of human tumour xenografts. Br. J. Cancer 47, 1–13 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fiebig, H. H., Maier, A. & Burger, A. M. Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur. J. Cancer 40, 802–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Scholz, C. C., Berger, D. P., Winterhalter, B. R., Henss, H. & Fiebig, H. H. Correlation of drug response in patients and in the clonogenic assay with solid human tumour xenografts. Eur. J. Cancer 26, 901–905 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. Sausville, E. A. & Feigal, E. Evolving approaches to cancer drug discovery and development at the National Cancer Institute, USA. Ann. Oncol. 10, 1287–1291 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Kelland, L. R. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur. J. Cancer 40, 827–836 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Staquet, M. J., Byar, D. P., Green, S. B. & Rozencweig, M. Clinical predictivity of transplantable tumor systems in the selection of new drugs for solid tumors: rationale for a three-stage strategy. Cancer Treat Rep. 67, 753–765 (1983).

    CAS  PubMed  Google Scholar 

  123. Suggitt, M. & Bibby, M. C. 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin. Cancer Res. 11, 971–981 (2005).

    CAS  PubMed  Google Scholar 

  124. Kerbel, R. S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol. Ther. 2, S134–S139 (2003).

    CAS  PubMed  Google Scholar 

  125. Peterson, J. K. & Houghton, P. J. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J. Cancer 40, 837–844 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Takimoto, C. H. Why drugs fail: of mice and men revisited. Clin. Cancer Res. 7, 229–230 (2001).

    CAS  PubMed  Google Scholar 

  127. Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nature Rev. Cancer 7, 645–658 (2007).

    Article  CAS  Google Scholar 

  128. Gopinathan, A. & Tuveson, D. A. The use of GEM models for experimental cancer therapeutics. Dis. Model Mech. 1, 83–86 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009). A recent study highlighting important differences in drug efficacy in mice with transplanted tumours compared with genetically engineered mouse models of the same tumour type.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stinson, S. F. et al. Morphological and immunocytochemical characteristics of human tumor cell lines for use in a disease-oriented anticancer drug screen. Anticancer Res. 12, 1035–1053 (1992).

    CAS  PubMed  Google Scholar 

  131. Paull, K. D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl Cancer Inst. 81, 1088–1092 (1989).

    Article  CAS  PubMed  Google Scholar 

  132. Scherf, U. et al. A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Weinstein, J. N. et al. Neural computing in cancer drug development: predicting mechanism of action. Science 258, 447–451 (1992).

    Article  CAS  PubMed  Google Scholar 

  134. van Osdol, W. W., Myers, T. G., Paull, K. D., Kohn, K. W. & Weinstein, J. N. Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. J. Natl Cancer Inst. 86, 1853–1859 (1994).

    Article  CAS  PubMed  Google Scholar 

  135. Weinstein, J. N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Alvarez, M. et al. Generation of a drug resistance profile by quantitation of mdr-1/P-glycoprotein in the cell lines of the National Cancer Institute Anticancer Drug Screen. J. Clin. Invest. 95, 2205–2214 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Monks, A., Scudiero, D. A., Johnson, G. S., Paull, K. D. & Sausville, E. A. The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anticancer Drug Des. 12, 533–541 (1997).

    CAS  PubMed  Google Scholar 

  138. Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).

    CAS  PubMed  Google Scholar 

  139. Adams, J. Proteasome inhibition in cancer: development of PS-341. Semin. Oncol. 28, 613–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Holbeck, S. L. Update on NCI in vitro drug screen utilities. Eur. J. Cancer 40, 785–793 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Yamori, T. Panel of human cancer cell lines provides valuable database for drug discovery and bioinformatics. Cancer Chemother. Pharmacol. 52, S74–S79 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Dan, S. et al. An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines. Cancer Res. 62, 1139–1147 (2002).

    CAS  PubMed  Google Scholar 

  143. Naasani, I., Seimiya, H., Yamori, T. & Tsuruo, T. FJ5002: a potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis. Cancer Res. 59, 4004–4011 (1999).

    CAS  PubMed  Google Scholar 

  144. Nakatsu, N. et al. Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays. Mol. Cancer Ther. 4, 399–412 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Yaguchi, S. et al. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl Cancer Inst. 98, 545–556 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Yamori, T. et al. Potent antitumor activity of MS-247, a novel DNA minor groove binder, evaluated by an in vitro and in vivo human cancer cell line panel. Cancer Res. 59, 4042–4049 (1999).

    CAS  PubMed  Google Scholar 

  147. Shiwa, M. et al. Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem. Biophys. Res. Commun. 309, 18–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Cappuzzo, F. et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J. Clin. Oncol. 27, 1667–1674 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Stephens, P. et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431, 525–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Shigematsu, H. et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res. 65, 1642–1646 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Brose, M. S. et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62, 6997–7000 (2002).

    CAS  PubMed  Google Scholar 

  153. Pratilas, C. A. et al. Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res. 68, 9375–9383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yamamoto, H. et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 68, 6913–6921 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Marks, J. L. et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res. 68, 5524–5528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Frei, E. 3rd. The National Cancer Chemotherapy Program. Science 217, 600–606 (1982).

    Article  PubMed  Google Scholar 

  157. Alley, M. C. et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589–601 (1988).

    CAS  PubMed  Google Scholar 

  158. Grever, M. R., Schepartz, S. A. & Chabner, B. A. The National Cancer Institute: cancer drug discovery and development program. Semin. Oncol. 19, 622–638 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologise to the authors of many relevant publications that we were unable to cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Settleman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

bevacizumab

cetuximab

dasatinib

erlotinib

gefitinib

gemcitabine

imatinib

lapatinib

nilotinib

panitumumab

sorafenib

sunitinib

trastuzumab

FURTHER INFORMATION

Jeff Settleman's homepage

Cancer Cell Line Project

Developmental Therapeutics Program

Glossary

Oncogene addiction

The hypothesis that tumours arising as a result of a particular oncogenic lesion remain dependent on the continued expression of that oncogene.

Oncogenic shock

A mechanism to explain oncogene addiction, in which acute inactivation of an oncoprotein is associated with differential attenuation rates of pro-survival and pro-apoptotic signals emanating from the oncoprotein, such that apoptotic signals become predominant and kill the cancer cell.

Synthetic lethality

Two genes are synthetic lethal if mutation of either one of the two genes is compatible with viability but mutation of both genes results in cell lethality.

Lineage addiction

The strict requirement for certain lineage-specific genes in tumorigenesis (for example, melanocyte-specific genes in melanomas).

Non-oncogene addiction

Cancer cells might harbour potential therapeutic targets that do not correspond to oncogenes but constitute proteins to which the cancer cell is similarly addicted.

Clustered heat map

A data matrix display in which the values of a variable in a two-dimensional map are represented as colours.

COMPARE algorithm

A computer program, which compares the pattern of drug sensitivity, as revealed by the NCI60 analysis, to a test compound with the sensitivity profile of all drugs previously tested against the NCI60 panel. Drugs with similar cell line sensitivity profiles tend to have a similar mode of action.

Cancer Cell Line Project

A project within the Cancer Genome Project, it is focused on genetic characterization of all human cancer cell lines currently used in laboratories. The analysis includes loss of heterozygosity and copy number analysis, detection of microsatellite instability and deep resequencing of all known cancer genes. Currently, the project involves 784 cell lines and 51 of the most common cancer genes.

Orthotopic model

Tumours generated by the introduction of human tumour fragments or cells into the same anatomical sites in an animal as those from which the tumour arose in humans.

Autochthonous model

An endogenous or in situ tumour that evolves from normal cells in an animal (for example, chemically induced tumours). This is in contrast to tumour models in which exogenous tumour cells are implanted into an animal (xenografts).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Haber, D. & Settleman, J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer 10, 241–253 (2010). https://doi.org/10.1038/nrc2820

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2820

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer