Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins

Key Points

  • Transcriptional programmes established during embryogenesis are transmitted to daughter cells of the adult so that each cell maintains its appropriate identity, a process referred to as cellular or transcriptional memory. Loss of cellular memory can lead to the spurious transcription of oncogenes and silencing of tumour suppressors, which predisposes to cancer.

  • Polycomb group (PcG) and trithorax group (TrxG) proteins affect covalent modifications of histone tails, the position or composition of nucleosomes, as well as DNA methylation, thereby affecting chromatin structure and so transcriptional status. In general, PcG proteins repress — whereas TrxG proteins activate — gene expression.

  • Gain of PcG and loss of TrxG function occurs in various human cancers, which is consistent with the idea that tumour cells have stem-like characteristics. This concept is supported by the observation that tumour cells have gene expression profiles that are similar to that of embryonic cells.

  • The balance between PcG and TrxG proteins affects the expression of genes that induce cellular senescence — a tumour suppressive mechanism that opposes cellular proliferation.

  • PcG–TrxG-mediated chromatin dynamics affects the expression of genes that regulate apoptosis, a process that controls unscheduled cellular proliferation by inducing cell death. PcG proteins can recruit proteins that transcriptionally silence genes encoding components of the apoptotic machinery.

  • PcG–TrxG complexes function to maintain the integrity of the genome. The observation that loss of TrxG chromatin remodelling proteins predispose to cancer, even in the absence of genomic lesions, implies that modulation of PcG–TrxG function can be used to treat cancer.

Abstract

The discovery that cancer can be governed above and beyond the level of our DNA presents a new era for designing therapies that reverse the epigenetic state of a tumour cell. Understanding how altered chromatin dynamics leads to malignancy is essential for controlling tumour cells while sparing normal cells. Polycomb and trithorax group proteins are evolutionarily conserved and maintain chromatin in the 'off' or 'on' states, thereby preventing or promoting gene expression, respectively. Recent work highlights the dynamic interplay between these opposing classes of proteins, providing new avenues for understanding how these epigenetic regulators function in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dynamic hourglass model for PcG–TrxG-mediated interactions.
Figure 2: PcG and TrxG-containing complexes.
Figure 3: PcG and TrxG complexes affect transcription by modulating enzymatic activities in opposing ways.
Figure 4: PcG and TrxG proteins regulate INK4A–ARF–INK4B in a dynamic and reversible manner.
Figure 5: PcG and TrxG complexes modulate apoptosis and genomic stability.

Similar content being viewed by others

References

  1. Wang, J. C. & Dick, J. E. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 15, 494–501 (2005).

    CAS  PubMed  Google Scholar 

  2. Clarke, M. F. et al. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339–9344 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Campbell, L. L. & Polyak, K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6, 2332–2338 (2007).

    CAS  PubMed  Google Scholar 

  4. Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer 3, 895–902 (2003).

    CAS  Google Scholar 

  5. Hill, R. P. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 66, 1891–1895; discussion 1890 (2006).

    CAS  PubMed  Google Scholar 

  6. Somervaille, T. C. et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 4, 129–140 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kennison, J. A. The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu. Rev. Genet. 29, 289–303 (1995).

    CAS  PubMed  Google Scholar 

  8. Simon, J. Locking in stable states of gene expression: transcriptional control during Drosophila development. Curr. Opin. Cell Biol. 7, 376–385 (1995).

    CAS  PubMed  Google Scholar 

  9. Pirrotta, V. Chromatin-silencing mechanisms in Drosophila maintain patterns of gene expression. Trends Genet. 13, 314–318 (1997).

    CAS  PubMed  Google Scholar 

  10. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B. & Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 128, 735–745 (2007).

    CAS  PubMed  Google Scholar 

  11. Muller, J. & Verrijzer, P. Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr. Opin. Genet. Dev. 19, 150–158 (2009).

    PubMed  Google Scholar 

  12. Kerppola, T. K. Polycomb group complexes-many combinations, many functions. Trends Cell Biol. 19, 692–704 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Simon, J. A. & Kingston, R. E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nature Rev. Mol. Cell Biol. 10, 697–708 (2009).

    CAS  Google Scholar 

  14. Bracken, A. P. & Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nature Rev. Cancer 9, 773–784 (2009). This Review highlights the intriguing role of cell fate transcription factors and long non-coding RNAs in the regulation of PcG function in cancer.

    CAS  Google Scholar 

  15. Breen, T. R. & Harte, P. J. Molecular characterization of the trithorax gene, a positive regulator of homeotic gene expression in Drosophila. Mech. Dev. 35, 113–127 (1991).

    CAS  PubMed  Google Scholar 

  16. Orlando, V. & Paro, R. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr. Opin. Genet. Dev. 5, 174–179 (1995).

    CAS  PubMed  Google Scholar 

  17. Brock, H. W. & van Lohuizen, M. The Polycomb group - no longer an exclusive club? Curr. Opin. Genet. Dev. 11, 175–181 (2001).

    CAS  PubMed  Google Scholar 

  18. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Levine, S. S., King, I. F. G. & Kingston, R. E. Division of labor in Polycomb group repression. Trends Biochem. Sci. 29, 478–485 (2004).

    CAS  PubMed  Google Scholar 

  20. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nature Rev. Cancer 6, 846–856 (2006).

    CAS  Google Scholar 

  21. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  PubMed  Google Scholar 

  22. Orlando, V. Polycomb, epigenomes, and control of cell identity. Cell 112, 599–606 (2003).

    CAS  PubMed  Google Scholar 

  23. Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell 15, 57–67 (2004).

    CAS  PubMed  Google Scholar 

  24. Sing, A. et al. A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885–897 (2009).

    CAS  PubMed  Google Scholar 

  25. Woo, C. J., Kharchenko, P. V., Daheron, L., Park, P. J. & Kingston, R. E. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell 140, 99–110 (2010). References 24 and 25 provide the first functional evidence for the presence of PREs in mammals.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Levine, S. S. et al. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol. 22, 6070–6078 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Allis, C. D. Jenuwein, T. & Reinberg, D. Epigenetics (Cold Spring Harbor Lab. Press, Cold Spring Harbor, New York, 2007).

    Google Scholar 

  28. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    CAS  PubMed  Google Scholar 

  29. Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854 (2005).

    CAS  PubMed  Google Scholar 

  30. Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a polycomb group protein complex. Science 306, 1574–1577 (2004).

    CAS  PubMed  Google Scholar 

  31. Dellino, G. I. et al. Polycomb silencing blocks transcription initiation. Mol. Cell 13, 887–893 (2004).

    CAS  PubMed  Google Scholar 

  32. Papp, B. & Muller, J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev. 20, 2041–2054 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol. 9, 1428–1435 (2007).

    CAS  PubMed  Google Scholar 

  34. Ku, M. et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4, e1000242 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 25, 3110–3122 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pasini, D., Bracken, A. P., Hansen, J. B., Capillo, M. & Helin, K. The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol. Cell. Biol. 27, 3769–3779 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  38. Vignali, M., Hassan, A. H., Neely, K. E. & Workman, J. L. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 20, 1899–1910 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    CAS  PubMed  Google Scholar 

  40. Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    CAS  PubMed  Google Scholar 

  41. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).

    CAS  PubMed  Google Scholar 

  42. Petruk, S. et al. Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 294, 1331–1334 (2001).

    CAS  PubMed  Google Scholar 

  43. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  44. Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136, 1122–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sif, S. ATP-dependent nucleosome remodeling complexes: enzymes tailored to deal with chromatin. J. Cell. Biochem. 91, 1087–1098 (2004).

    CAS  PubMed  Google Scholar 

  46. Smith, C. L. & Peterson, C. L. ATP-dependent chromatin remodeling. Curr. Top. Dev. Biol. 65, 115–148 (2005).

    CAS  PubMed  Google Scholar 

  47. Tamkun, J. W. et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561–572 (1992).

    CAS  PubMed  Google Scholar 

  48. Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9, 2770–2779 (1995).

    CAS  Google Scholar 

  49. Recht, J. & Osley, M. A. Mutations in both the structured domain and N-terminus of histone H2B bypass the requirement for Swi-Snf in yeast. EMBO J. 18, 229–240 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Eisen, J. A., Sweder, K. S. & Hanawalt, P. C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Corey, L. L., Weirich, C. S., Benjamin, I. J. & Kingston, R. E. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev. 17, 1392–1401 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sudarsanam, P., Iyer, V. R., Brown, P. O. & Winston, F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 3364–3369 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schnitzler, G., Sif, S. & Kingston, R. E. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94, 17–27 (1998).

    CAS  PubMed  Google Scholar 

  54. Imbalzano, A. N., Kwon, H., Green, M. R. & Kingston, R. E. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370, 481–485 (1994).

    CAS  PubMed  Google Scholar 

  55. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006). This seminal paper links covalent histone modification to chromatin remodelling.

    CAS  PubMed  Google Scholar 

  56. Haupt, Y., Alexander, W. S., Barri, G., Klinken, S. P. & Adams, J. M. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65, 753–763 (1991).

    CAS  PubMed  Google Scholar 

  57. van Lohuizen, M. et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65, 737–752 (1991).

    CAS  PubMed  Google Scholar 

  58. Bagchi, A. et al. CHD5 is a tumor suppressor at human 1p36. Cell 128, 459–475 (2007). This paper identified CHD5 as a tumour suppressor, providing the first functional evidence that members of the CHD chromatin remodelling family modulate tumorigenesis.

    CAS  PubMed  Google Scholar 

  59. Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nature Rev. Cancer 6, 472–476 (2006). This Review discusses evidence for cellular senescence as a tumour suppressive mechanism and its utility for monitoring the success of anticancer therapies.

    CAS  Google Scholar 

  60. Bruggeman, S. W. et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev. 19, 1438–1443 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    CAS  PubMed  Google Scholar 

  63. Gonzalez, S. et al. Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature 440, 702–706 (2006). This groundbreaking paper identified a cis -acting element that functions to coordinately regulate expression of the CDKN2A and CDKN2B loci, providing the first example of replication-coupled transcriptional regulation in mammals.

    CAS  PubMed  Google Scholar 

  64. Sharpless, N. E. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat. Res. 576, 22–38 (2005).

    CAS  PubMed  Google Scholar 

  65. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    CAS  PubMed  Google Scholar 

  67. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. van der Lugt, N. M. et al. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 8, 757–769 (1994).

    CAS  PubMed  Google Scholar 

  69. Barradas, M. et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev. 23, 1177–1182 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Agger, K. et al. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev. 23, 1171–1176 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994). References 70 and 71 provide important mechanistic insight into PcG–TrxG-mediated chromatin dynamics in response to activated oncogenes.

    CAS  PubMed  Google Scholar 

  72. Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15, 5370–5382 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kia, S. K., Gorski, M. M., Giannakopoulos, S. & Verrijzer, C. P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol. Cell. Biol. 28, 3457–3464 (2008). This work demonstrates that TrxG chromatin remodelling proteins can override PcG-mediated repression in cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ae, K. et al. Chromatin remodeling factor encoded by ini1 induces G1 arrest and apoptosis in ini1-deficient cells. Oncogene 21, 3112–3120 (2002).

    CAS  PubMed  Google Scholar 

  75. Versteege, I., Medjkane, S., Rouillard, D. & Delattre, O. A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle. Oncogene 21, 6403–6412 (2002).

    CAS  PubMed  Google Scholar 

  76. Betz, B. L., Strobeck, M. W., Reisman, D. N., Knudsen, E. S. & Weissman, B. E. Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 21, 5193–5203 (2002).

    CAS  PubMed  Google Scholar 

  77. Imbalzano, A. N. & Jones, S. N. Snf5 tumor suppressor couples chromatin remodeling, checkpoint control, and chromosomal stability. Cancer Cell 7, 294–295 (2005).

    CAS  PubMed  Google Scholar 

  78. Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).

    CAS  PubMed  Google Scholar 

  79. Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1, 500–506 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Roberts, C. W., Galusha, S. A., McMenamin, M. E., Fletcher, C. D. & Orkin, S. H. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc. Natl Acad. Sci. USA 97, 13796–13800 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Guidi, C. J. et al. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol. Cell. Biol. 21, 3598–3603 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Isakoff, M. S. et al. Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc. Natl Acad. Sci. USA 102, 17745–17750 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Guidi, C. J. et al. Functional interaction of the retinoblastoma and Ini1/Snf5 tumor suppressors in cell growth and pituitary tumorigenesis. Cancer Res. 66, 8076–8082 (2006).

    CAS  PubMed  Google Scholar 

  84. Bultman, S. J. et al. Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27, 460–468 (2008).

    CAS  PubMed  Google Scholar 

  85. Chai, J. et al. Tumor-specific cooperation of retinoblastoma protein family and Snf5 inactivation. Cancer Res. 67, 3002–3009 (2007).

    CAS  PubMed  Google Scholar 

  86. Tsikitis, M., Zhang, Z., Edelman, W., Zagzag, D. & Kalpana, G. V. Genetic ablation of Cyclin D1 abrogates genesis of rhabdoid tumors resulting from Ini1 loss. Proc. Natl Acad. Sci. USA 102, 12129–12134 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Thompson, P. M., Gotoh, T., Kok, M., White, P. S. & Brodeur, G. M. CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene 22, 1002–1011 (2003).

    CAS  PubMed  Google Scholar 

  88. Jacobs, J. J. & van Lohuizen, M. Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim. Biophys. Acta 1602, 151–161 (2002).

    CAS  PubMed  Google Scholar 

  89. Srinivasan, S., Dorighi, K. M. & Tamkun, J. W. Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II. PLoS Genet. 4, e1000217 (2008).

    PubMed  PubMed Central  Google Scholar 

  90. Ayton, P. M. & Cleary, M. L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20, 5695–5707 (2001).

    CAS  PubMed  Google Scholar 

  91. Daser, A. & Rabbitts, T. H. Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes Dev. 18, 965–974 (2004).

    CAS  PubMed  Google Scholar 

  92. Popovic, R. & Zeleznik-Le, N. J. MLL: how complex does it get? J. Cell. Biochem. 95, 234–242 (2005).

    CAS  PubMed  Google Scholar 

  93. Liu, H., Cheng, E. H. & Hsieh, J. J. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev. 21, 2385–2398 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, H., Takeda, S., Cheng, E. H. & Hsieh, J. J. Biphasic MLL takes helm at cell cycle control: implications in human mixed lineage leukemia. Cell Cycle 7, 428–435 (2008). References 93 and 94 discovered that MLL levels oscillate as a function of the cell cycle, and that MLL fusion proteins found in human leukaemia are resistant to this regulation.

    CAS  PubMed  Google Scholar 

  95. Yokoyama, A., Kitabayashi, I., Ayton, P. M., Cleary, M. L. & Ohki, M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 100, 3710–3718 (2002).

    CAS  PubMed  Google Scholar 

  96. Hsieh, J. J., Cheng, E. H. & Korsmeyer, S. J. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115, 293–303 (2003).

    CAS  PubMed  Google Scholar 

  97. Hsieh, J. J., Ernst, P., Erdjument-Bromage, H., Tempst, P. & Korsmeyer, S. J. Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol. Cell. Biol. 23, 186–194 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Takeda, S. et al. Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev. 20, 2397–2409 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tyagi, S., Chabes, A. L., Wysocka, J. & Herr, W. E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol. Cell 27, 107–119 (2007).

    CAS  PubMed  Google Scholar 

  100. Yu, B. D., Hanson, R. D., Hess, J. L., Horning, S. E. & Korsmeyer, S. J. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc. Natl Acad. Sci. USA 95, 10632–10636 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yagi, H. et al. Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 92, 108–117 (1998).

    CAS  PubMed  Google Scholar 

  102. Kroon, E. et al. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 17, 3714–3725 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ayton, P. M. & Cleary, M. L. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 17, 2298–2307 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Okada, Y. et al. hDOT1L links histone methylation to leukemogenesis. Cell 121, 167–178 (2005).

    CAS  PubMed  Google Scholar 

  105. van Leeuwen, F., Gafken, P. R. & Gottschling, D. E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756 (2002).

    CAS  PubMed  Google Scholar 

  106. Feng, Q. et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12, 1052–1058 (2002).

    CAS  PubMed  Google Scholar 

  107. Ng, H. H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Munnia, A. et al. Expression, cellular distribution and protein binding of the glioma amplified sequence (GAS41), a highly conserved putative transcription factor. Oncogene 20, 4853–4863 (2001).

    CAS  PubMed  Google Scholar 

  109. Park, J. H. & Roeder, R. G. GAS41 is required for repression of the p53 tumor suppressor pathway during normal cellular proliferation. Mol. Cell. Biol. 26, 4006–4016 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Debernardi, S. et al. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 99, 275–281 (2002).

    PubMed  Google Scholar 

  111. Nie, Z. et al. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol. Cell. Biol. 23, 2942–2952 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130, 1083–1094 (2007).

    CAS  PubMed  Google Scholar 

  113. Lee, M. G. et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450 (2007).

    CAS  PubMed  Google Scholar 

  114. Hoenerhoff, M. J. et al. BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene 28, 3022–3032 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    CAS  PubMed  Google Scholar 

  116. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    CAS  PubMed  Google Scholar 

  117. Murphy, T. M., Perry, A. S. & Lawler, M. The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer. Endocr. Relat. Cancer 15, 11–25 (2008).

    CAS  PubMed  Google Scholar 

  118. Chen, H., Tu, S. W. & Hsieh, J. T. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J. Biol. Chem. 280, 22437–22444 (2005).

    CAS  PubMed  Google Scholar 

  119. Marchion, D. & Munster, P. Development of histone deacetylase inhibitors for cancer treatment. Expert Rev. Anticancer Ther. 7, 583–598 (2007).

    CAS  PubMed  Google Scholar 

  120. Mottet, D. & Castronovo, V. Histone deacetylases: target enzymes for cancer therapy. Clin. Exp. Metastasis 25, 183–189 (2008).

    CAS  PubMed  Google Scholar 

  121. Fulda, S. Modulation of TRAIL-induced apoptosis by HDAC inhibitors. Curr. Cancer Drug Targets 8, 132–140 (2008).

    CAS  PubMed  Google Scholar 

  122. Tan, J. et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21, 1050–1063 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Klochendler-Yeivin, A., Picarsky, E. & Yaniv, M. Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol. Cell. Biol. 26, 2661–2674 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Vries, R. G. et al. Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. Genes Dev. 19, 665–670 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hernando, E. et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430, 797–802 (2004).

    CAS  PubMed  Google Scholar 

  126. Park, J. H. et al. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting γ-H2AX induction. EMBO J. 25, 3986–3997 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. McKenna, E. S. et al. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol. Cell. Biol. 28, 6223–6233 (2008). This paper supports the concept that inactivation of TrxG chromatin remodelling proteins can substitute for genomic instability in cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chai, J., Charboneau, A. L., Betz, B. L. & Weissman, B. E. Loss of the hSNF5 gene concomitantly inactivates p21CIP/WAF1 and p16INK4a activity associated with replicative senescence in A204 rhabdoid tumor cells. Cancer Res. 65, 10192–10198 (2005).

    CAS  PubMed  Google Scholar 

  129. Sansam, C. G. & Roberts, C. W. Epigenetics and cancer: altered chromatin remodeling via Snf5 loss leads to aberrant cell cycle regulation. Cell Cycle 5, 621–624 (2006).

    CAS  PubMed  Google Scholar 

  130. Yang, X. et al. CDKN1C (p57KPI2) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE 4, e5011 (2009).

    PubMed  PubMed Central  Google Scholar 

  131. Bachmann, I. M. et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol. 24, 268–273 (2006).

    CAS  PubMed  Google Scholar 

  132. Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391–400 (2005).

    CAS  PubMed  Google Scholar 

  133. Lin, J. C. et al. Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12, 432–444 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang, G. G., Allis, C. D. & Chi, P. Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol. Med. 13, 363–372 (2007).

    CAS  PubMed  Google Scholar 

  135. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853–862 (2005).

    CAS  PubMed  Google Scholar 

  136. Richter, G. H. et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc. Natl Acad. Sci. USA 106, 5324–5329 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kidani, K. et al. High expression of EZH2 is associated with tumor proliferation and prognosis in human oral squamous cell carcinomas. Oral Oncol. 45, 39–46 (2009).

    CAS  PubMed  Google Scholar 

  138. Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Pietersen, A. M. et al. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 10, R109 (2008).

    PubMed  PubMed Central  Google Scholar 

  140. Sasaki, M. et al. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab. Invest. 88, 873–882 (2008).

    CAS  PubMed  Google Scholar 

  141. Yonemitsu, Y. et al. Distinct expression of polycomb group proteins EZH2 and BMI1 in hepatocellular carcinoma. Hum. Pathol. 40, 1304–1311 (2009).

    CAS  PubMed  Google Scholar 

  142. van Leenders, G. J. et al. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur. Urol. 52, 455–463 (2007).

    CAS  PubMed  Google Scholar 

  143. Hoffmann, M. J. et al. Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B, are associated with DNA methylation changes in prostate cancer. Cancer Biol. Ther. 6, 1403–1412 (2007).

    CAS  PubMed  Google Scholar 

  144. He, X. T. et al. Association between Bmi1 and clinicopathological status of esophageal squamous cell carcinoma. World J. Gastroenterol. 15, 2389–2394 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337–341 (2004).

    CAS  PubMed  Google Scholar 

  146. Mohty, M., Yong, A. S., Szydlo, R. M., Apperley, J. F. & Melo, J. V. The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood 110, 380–383 (2007).

    CAS  PubMed  Google Scholar 

  147. van Galen, J. C. et al. Expression of the polycomb-group gene BMI1 is related to an unfavourable prognosis in primary nodal DLBCL. J. Clin. Pathol. 60, 167–172 (2007).

    CAS  PubMed  Google Scholar 

  148. Nowak, K. et al. BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nucleic Acids Res. 34, 1745–1754 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Shafaroudi, A. M. et al. Overexpression of BMI1, a polycomb group repressor protein, in bladder tumors: a preliminary report. Urol. J. 5, 99–105 (2008).

    PubMed  Google Scholar 

  150. Tirabosco, R., De Maglio, G., Skrap, M., Falconieri, G. & Pizzolitto, S. Expression of the Polycomb-Group protein BMI1 and correlation with p16 in astrocytomas an immunohistochemical study on 80 cases. Pathol. Res. Pract. 204, 625–631 (2008).

    PubMed  Google Scholar 

  151. Ziemin-van der Poel, S. et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl Acad. Sci. USA 88, 10735–10739 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71, 701–708 (1992).

    CAS  PubMed  Google Scholar 

  153. Domer, P. H. et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc. Natl Acad. Sci. USA 90, 7884–7888 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Thirman, M. J. et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N. Engl. J. Med. 329, 909–914 (1993).

    CAS  PubMed  Google Scholar 

  155. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).

    CAS  PubMed  Google Scholar 

  156. Sevenet, N. et al. Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum. Mol. Genet. 8, 2359–2368 (1999).

    CAS  PubMed  Google Scholar 

  157. Biegel, J. A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 59, 74–79 (1999).

    CAS  PubMed  Google Scholar 

  158. Reisman, D. N. et al. Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: differential effects on RB-mediated growth arrest vs CD44 expression. Oncogene 21, 1196–1207 (2002).

    CAS  PubMed  Google Scholar 

  159. Reisman, D. N., Sciarrotta, J., Wang, W., Funkhouser, W. K. & Weissman, B. E. Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res. 63, 560–566 (2003).

    CAS  PubMed  Google Scholar 

  160. Medina, P. P. et al. Genetic and epigenetic screening for gene alterations of the chromatin-remodeling factor, SMARCA4/BRGI, in lung tumors. Genes Chromosomes Cancer 41, 170–177 (2004).

    CAS  PubMed  Google Scholar 

  161. Medina, P. P. et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum. Mutat. 29, 617–622 (2008).

    CAS  PubMed  Google Scholar 

  162. Gunduz, E. et al. Genetic and epigenetic alterations of BRG1 promote oral cancer development. Int. J. Oncol. 26, 201–210 (2005).

    CAS  PubMed  Google Scholar 

  163. Gunduz, E. et al. Loss of heterozygosity at the 9p21–24 region and identification of BRM as a candidate tumor suppressor gene in head and neck squamous cell carcinoma. Cancer Invest. 27, 661–668 (2009).

    CAS  PubMed  Google Scholar 

  164. Yamamichi, N. et al. Frequent loss of Brm expression in gastric cancer correlates with histologic features and differentiation state. Cancer Res. 67, 10727–10735 (2007).

    CAS  PubMed  Google Scholar 

  165. Moloney, F. J. et al. Hotspot mutation of Brahma in non-melanoma skin cancer. J. Invest. Dermatol. 129, 1012–1015 (2009).

    CAS  PubMed  Google Scholar 

  166. Brodeur, G. M., Sekhon, G. & Goldstein, M. N. Chromosomal aberrations in human neuroblastomas. Cancer 40, 2256–2263 (1977).

    CAS  PubMed  Google Scholar 

  167. White, P. S. et al. A region of consistent deletion in neuroblastoma maps within human chromosome 1p36.2-36.3. Proc. Natl Acad. Sci. USA 92, 5520–5524 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Caron, H. et al. Chromosome bands 1p35-36 contain two distinct neuroblastoma tumor suppressor loci, one of which is imprinted. Genes Chromosomes Cancer 30, 168–174 (2001).

    CAS  PubMed  Google Scholar 

  169. Godfried, M. B. et al. Lack of interstitial chromosome 1p deletions in clinically-detected neuroblastoma. Eur. J. Cancer 38, 1513–1519 (2002).

    CAS  PubMed  Google Scholar 

  170. White, P. S. et al. Definition and characterization of a region of 1p36.3 consistently deleted in neuroblastoma. Oncogene 24, 2684–2694 (2005).

    CAS  PubMed  Google Scholar 

  171. Okawa, E. R. et al. Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in neuroblastomas. Oncogene 27, 803–810 (2008).

    CAS  PubMed  Google Scholar 

  172. Piaskowski, S. et al. GADD45A and EPB41 as tumor suppressor genes in meningioma pathogenesis. Cancer Genet. Cytogenet. 162, 63–67 (2005).

    CAS  PubMed  Google Scholar 

  173. Poetsch, M., Dittberner, T. & Woenckhaus, C. Microsatellite analysis at 1p36.3 in malignant melanoma of the skin: fine mapping in search of a possible tumour suppressor gene region. Melanoma Res. 13, 29–33 (2003).

    CAS  PubMed  Google Scholar 

  174. Moley, J. F. et al. Consistent association of 1p loss of heterozygosity with pheochromocytomas from patients with multiple endocrine neoplasia type 2 syndromes. Cancer Res. 52, 770–774 (1992).

    CAS  PubMed  Google Scholar 

  175. Mulligan, L. M., Gardner, E., Smith, B. A., Mathew, C. G. & Ponder, B. A. Genetic events in tumour initiation and progression in multiple endocrine neoplasia type 2. Genes Chromosomes Cancer 6, 166–177 (1993).

    CAS  PubMed  Google Scholar 

  176. Edstrom Elder, E. et al. Loss of heterozygosity on the short arm of chromosome 1 in pheochromocytoma and abdominal paraganglioma. World J. Surg. 26, 965–971 (2002).

    PubMed  Google Scholar 

  177. Aarts, M. et al. Microarray-based CGH of sporadic and syndrome-related pheochromocytomas using a 0.1-0.2 Mb bacterial artificial chromosome array spanning chromosome arm 1p. Genes Chromosomes Cancer 45, 83–93 (2006).

    CAS  PubMed  Google Scholar 

  178. Dong, Z. et al. Identification of two contiguous minimally deleted regions on chromosome 1p36.31-p36.32 in oligodendroglial tumours. Br. J. Cancer 91, 1105–1111 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Felsberg, J. et al. Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol. 14, 121–130 (2004).

    CAS  PubMed  Google Scholar 

  180. Barbashina, V., Salazar, P., Holland, E. C., Rosenblum, M. K. & Ladanyi, M. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin. Cancer Res. 11, 1119–1128 (2005).

    CAS  PubMed  Google Scholar 

  181. Mori, N. et al. Chromosome band 1p36 contains a putative tumor suppressor gene important in the evolution of chronic myelocytic leukemia. Blood 92, 3405–3409 (1998).

    CAS  PubMed  Google Scholar 

  182. Melendez, B. et al. Coincidental LOH regions in mouse and humans: evidence for novel tumor suppressor loci at 9q22-q34 in non-Hodgkin's lymphomas. Leuk. Res. 27, 627–633 (2003).

    CAS  PubMed  Google Scholar 

  183. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kleer, C. G., Bryant, B. R., Giordano, T. J., Sobel, M. & Merino, M. J. Genetic changes in chromosomes 1p and 17p in thyroid cancer progression. Endocr. Pathol. 11, 137–143 (2000).

    CAS  PubMed  Google Scholar 

  185. Zhou, C. Z., Qiu, G. Q., Zhang, F., He, L. & Peng, Z. H. Loss of heterozygosity on chromosome 1 in sporadic colorectal carcinoma. World J. Gastroenterol. 10, 1431–1435 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Cheung, T. H. et al. Clinicopathologic significance of loss of heterozygosity on chromosome 1 in cervical cancer. Gynecol. Oncol. 96, 510–515 (2005).

    CAS  PubMed  Google Scholar 

  187. Bieche, I. et al. Two distinct regions involved in 1p deletion in human primary breast cancer. Cancer Research 53, 1990–1994 (1993).

    CAS  PubMed  Google Scholar 

  188. Bieche, I., Khodja, A. & Lidereau, R. Deletion mapping of chromosomal region 1p32-pter in primary breast cancer. Genes Chromosomes Cancer 24, 255–263 (1999).

    CAS  PubMed  Google Scholar 

  189. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    PubMed  Google Scholar 

  190. Gorringe, K. L. et al. Mutation and methylation analysis of the chromodomain-helicase-DNA binding 5 gene in ovarian cancer. Neoplasia 10, 1253–1258 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank to J. Duffy and Y.-N. Chang for assistance in preparing this manuscript, and to members of her laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

doxorubicin

FURTHER INFORMATION

Alea A. Mills's homepage

Glossary

Cancer stem cell hypothesis

The theory that tumours are composed of a heterogeneous population of cells, including a subset of relatively rare cancer stem cells or 'tumour-propagating' cells that are essential for malignancy.

Clonal evolution model

The theory that tumour-propagating cells make up a considerable proportion of cells in a tumour, and that the malignant state is the consequence of the selection of dominant clones in the population.

Body segment

Transcriptional cascades set up during the development of D. melanogaster partition the embryo into 14 sections or 'parasegments' that correspond to the final anatomical regions of the adult.

Histone code

The concept that the establishment and interpretation of an intricate pattern of histone tail modifications orchestrate chromatin dynamics and gene expression.

SET domain

An approximately 130 amino acid-long motif that provides the HMT activity in various proteins that methylate specific lysine residues of histones as well as other protein substrates.

Polycomb repressive element

PRE. Specific DNA sequence identified in D. melanogaster that is recognized and bound by PRC2 complexes.

Chromodomain

An approximately 60 amino acid-long motif originally discovered in HP1 and PcG proteins from D. melanogaster; it is present in various chromatin regulating proteins.

RING finger domain

An 40–60 residue Cys4-His-Cys3-containing motif that binds zinc, and facilitates interactions with DNA, RNA, proteins and lipids.

SWI2–SNF2

A complex identified in yeast that is required for transcriptional activation of 7% of the genome, including the mating type switch (SWI) and the sucrose non-fermenting (SNF) genes for which SWI2–SNF2 are named.

Bromodomain

A motif that binds acetylated lysines present on histone tails.

PHD finger

Around 50–80 residues containing the Cys4-His-Cys3 motif originally identified in Arabidopsis thaliana that binds specifically modified histones.

Chromosome engineering

A Cre-loxP-based embryonic stem cell technology that enables the generation of mouse models harbouring defined chromosome rearrangements such as deletions, duplications, inversions and translocations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, A. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer 10, 669–682 (2010). https://doi.org/10.1038/nrc2931

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing