Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells

Abstract

Human endothelial cells (ECs) and pericytes are of great interest for research on vascular development and disease, as well as for future therapy. This protocol describes the efficient generation of ECs and pericytes from human pluripotent stem cells (hPSCs) under defined conditions. Essential steps for hPSC culture, differentiation, isolation and functional characterization of ECs and pericytes are described. Substantial numbers of both cell types can be derived in only 2–3 weeks: this involves differentiation (10 d), isolation (1 d) and 4 or 10 d of expansion of ECs and pericytes, respectively. We also describe two assays for functional evaluation of hPSC-derived ECs: (i) primary vascular plexus formation upon coculture with hPSC-derived pericytes and (ii) incorporation in the vasculature of zebrafish xenografts in vivo. These assays can be used to test the quality and drug sensitivity of hPSC-derived ECs and model vascular diseases with patient-derived hPSCs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of the protocol procedures.
Figure 2: Phase-contrast images of hPSCs at different stages of differentiation.
Figure 3: Flow cytometric analysis of VE-cadherin and CD31 expression at different time points of differentiation.
Figure 4: Characterization of isolated ECs and pericytes.
Figure 5: Coculture of hPSC-derived ECs with pericytes.
Figure 6: Zebrafish xenotransplantation assay.
Figure 7: Zebrafish xenograft as a model to assess mammalian EC functionality.

Similar content being viewed by others

References

  1. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Touboul, T. et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51, 1754–1765 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Green, M.D. et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 29, 267–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Spence, J.R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  PubMed  CAS  Google Scholar 

  8. Elliott, D.A. et al. NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat. Methods 8, 1037–1040 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Dubois, N.C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29, 1011–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, S.X.L. et al. efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 1–11 (2013).

  11. Lancaster, M.A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Ingram, D.A. et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104, 2752–2760 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Yoder, M.C. et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109, 1801–1809 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Winkler, E.A., Bell, R.D. & Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lebrin, F. et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat. Med. 16, 420–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Chintalgattu, V. et al. Coronary microvascular pericytes are the cellular target of sunitinib malate–induced cardiotoxicity. Sci. Transl. Med. 5, 187ra69 (2013).

    Article  PubMed  CAS  Google Scholar 

  18. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Bianco, P. et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat. Med. 19, 35–42 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frenette, P.S., Pinho, S., Lucas, D. & Scheiermann, C. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 31, 285–316 (2013).

    Article  PubMed  Google Scholar 

  21. Orlova, V.V. et al. Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts. Arterioscler. Thromb. Vasc. Biol. 34, 177–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Levenberg, S. Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 99, 4391–4396 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dar, A. et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125, 87–99 (2012).

    Article  PubMed  Google Scholar 

  24. Choi, K.-D. et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 27, 559–567 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nourse, M.B. et al. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler. Thromb. Vasc. Biol. 30, 80–89 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Adams, W.J. et al. Stem cell reports. Stem Cell Rep. 1, 105–113 (2013).

    Article  CAS  Google Scholar 

  27. Vodyanik, M.A. et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells. Cell Stem Cell 7, 718–729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kusuma, S. et al. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc. Natl. Acad. Sci. USA 110, 12601–12606 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. James, D. et al. Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFβ inhibition is Id1 dependent. Nat. Biotechnol. 28, 161–166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Samuel, R. et al. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 110, 12774–12779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, T.S. et al. Vascular progenitors from cord blood–derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation 129, 359–372 (2014).

    Article  PubMed  Google Scholar 

  32. White, M.P. et al. Limited gene expression variation in human embryonic stem cell and induced pluripotent stem cell-derived endothelial cells. Stem Cells 31, 92–103 (2012).

    Article  CAS  Google Scholar 

  33. Costa, M. et al. Derivation of endothelial cells from human embryonic stem cells in fully defined medium enables identification of lysophosphatidic acid and platelet activating factor as regulators of eNOS localization. Stem Cell Res. 10, 103–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Lippmann, E.S. et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30, 783–791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheung, C., Bernardo, A.S., Trotter, M.W.B., Pedersen, R.A. & Sinha, S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin–dependent disease susceptibility. Nat. Biotechnol. 30, 165–173 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ng, E.S., Davis, R., Stanley, E.G. & Elefanty, A.G. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat. Protoc. 3, 768–776 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. USA 109, E1848–E1857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Evensen, L., Micklem, D.R., Link, W. & Lorens, J.B. A novel imaging-based high-throughput screening approach to anti-angiogenic drug discovery. Cytometry A 77, 41–51 (2010).

    PubMed  Google Scholar 

  39. Evensen, L., Link, W. & Lorens, J.B. Image-based high-throughput screening for inhibitors of angiogenesis. Methods Mol. Biol. 931, 139–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Evensen, L. et al. Mural cell associated VEGF is required for organotypic vessel formation. PLoS ONE 4, e5798 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zudaire, E., Gambardella, L., Kurcz, C. & Vermeren, S. A computational tool for quantitative analysis of vascular networks. PLoS ONE 6, e27385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jones, T.R. et al. CellProfiler Analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformatics 9, 482 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Stoletov, K. & Klemke, R. Catch of the day: zebrafish as a human cancer model. Oncogene 27, 4509–4520 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Goessling, W., North, T.E. & Zon, L.I. New waves of discovery: modeling cancer in zebrafish. J. Clin. Oncol. 25, 2473–2479 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Isogai, S., Lawson, N.D., Torrealday, S., Horiguchi, M. & Weinstein, B.M. Angiogenic network formation in the developing vertebrate trunk. Development 130, 5281–5290 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Naber, H.P.H., Drabsch, Y., Snaar-Jagalska, B.E., ten Dijke, P. & van Laar, T. Snail and Slug, key regulators of TGF-β–induced EMT, are sufficient for the induction of single-cell invasion. Biochem. Biophys. Res. Commun. 435, 58–63 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, L. et al. TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. Mol. Cell 51, 559–572 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, L. et al. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat. Cell Biol. 14, 717–726 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. He, S. et al. Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J. Pathol. 227, 431–445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ghotra, V.P.S. et al. Automated whole-animal bio-imaging assay for human cancer dissemination. PLoS ONE 7, e31281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van de Stolpe, A. et al. Human embryonic stem cells: towards therapies for cardiac disease. Derivation of a Dutch human embryonic stem cell line. Reprod. BioMed. Online 11, 476–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Dambrot, C. et al. Polycistronic lentivirus induced pluripotent stem cells from skin biopsies after long term storage, blood outgrowth endothelial cells and cells from milk teeth. Differentiation 85, 101–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Davis, R.P. et al. A protocol for removal of antibiotic resistance cassettes from human embryonic stem cells genetically modified by homologous recombination or transgenesis. Nat. Protoc. 3, 1550–1558 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio) (4th ed.) (University of Oregon Press, 2007).

  56. Rosol, T.J., Tannehill-Gregg, S.H., Corn, S., Schneider, A. & McCauley, L.K. Animal models of bone metastasis. Cancer Treat. Res. 118, 47–81 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Freund (Department of Anatomy and Embryology and human iPS core facility, LUMC) for the establishment of the hPSC cultures, and D. Ward-van Oostwaard (Department of Anatomy and Embryology, LUMC) and S. van de Pas (human iPS core facility, LUMC) for their excellent technical assistance. We also thank J. Wiegant and A. Boonzaier-van der Laan (Department of Molecular Cell Biology, LUMC) for assistance with the imaging and confocal microscopy. We acknowledge K. Iwata (OSI Pharmaceuticals) for providing TGF-β3. The work was supported by the LUMC Gisela Thier Fellowship (V.V.O.); by the EU's Seventh Framework Programme for research, technical development and demonstration under grant agreement no. 602423 (Plurimes) (V.V.O. and F.E.v.d.H.); by the SWORO Foundation for Research on HHT (V.V.O. and F.E.v.d.H.); by the LeDucq VasculoMorph Transatlantic Consortium (P.t.D.); and the Netherlands Institute of Regenerative Medicine and the Netherlands Heart Foundation (2008B106; C.L.M.).

Author information

Authors and Affiliations

Authors

Contributions

V.V.O. designed the protocol, supervised the project, wrote the manuscript, established the monolayer differentiation, performed isolation and expansion of ECs and pericytes, performed the coculture experiment and performed all of the cell experiments. F.E.v.d.H. performed all of the cell experiments and wrote part of the protocol. S.P.-R. characterized the monolayer differentiation, performed the coculture experiments and developed the pipeline for the quantification of the vascular sprouts with CellProfiler. Y.D. performed zebrafish xenotransplantation experiments and wrote the zebrafish protocol. P.t.D. supervised the project and edited the manuscript. C.L.M. designed the protocol, supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Valeria V Orlova or Christine L Mummery.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlova, V., van den Hil, F., Petrus-Reurer, S. et al. Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat Protoc 9, 1514–1531 (2014). https://doi.org/10.1038/nprot.2014.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.102

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing