Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Ultrastructural readout of functional synaptic vesicle pools in hippocampal slices based on FM dye labeling and photoconversion

Abstract

Fast activity-driven turnover of neurotransmitter-filled vesicles at presynaptic terminals is a crucial step in information transfer in the CNS. Characterization of the relationship between the nanoscale organization of synaptic vesicles and their functional properties during transmission is currently of interest. Here we outline a procedure for ultrastructural investigation of functional vesicles in synapses from native mammalian brain tissue. FM dye is injected into the target region of a brain slice and upstream axons are electrically activated to stimulate vesicle turnover and dye uptake. In the presence of diaminobenzidine (DAB), photoactivation of dye-filled vesicles yields an osmiophilic precipitate that is visible in electron micrographs. When combined with serial-section electron microscopy, fundamental ultrastructure-function relationships of presynaptic terminals in native circuits are revealed. We outline the utility of this protocol for the 3D reconstruction of a recycling vesicle pool in CA3–CA1 synapses from an acute hippocampal slice and for the characterization of its anatomically defined docked pool. This protocol requires 6–7 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the experimental protocol.
Figure 2: Schematics of key equipment items.
Figure 3: Labeling functional synapses in acute slice.
Figure 4: Testing activity dependence of synaptic labeling.
Figure 5: Monitoring the progress of photoconversion.
Figure 6: Approach for embedding tissue in EPON.
Figure 7: Ultrastructural readout of functional vesicles.

Similar content being viewed by others

References

  1. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Alabi, A.A. et al. Synaptic vesicle pools and dynamics. Cold Spring Harb. Perspect. Biol. 4, a013680 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rizzoli, S.O. et al. Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Rosenmund, C. et al. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Fredj, N.B. et al. A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat. Neurosci. 12, 751–758 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sara, Y. et al. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45, 563–573 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Staras, K. et al. A vesicle superpool spans multiple presynaptic terminals in hippocampal neurons. Neuron 66, 37–44 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, S.H. et al. CDK5 serves as a major control point in neurotransmitter release. Neuron 67, 797–809 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ratnayaka, A. et al. Recruitment of resting vesicles into recycling pools supports NMDA-receptor dependent synaptic potentiation in cultured hippocampal neurons. J. Physiol. 590, 1585–1597 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murthy, V.N. et al. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Thiagarajan, T.C. et al. Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47, 725–737 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Tyler, W.J. et al. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J. Physiol. 574, 787–803 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Staras, K. Share and share alike: trading of presynaptic elements between central synapses. Trends Neurosci. 30, 292–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Staras, K. et al. Sharing vesicles between central presynaptic terminals: implications for synaptic function. Front Synaptic Neurosci. 2, 20 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Murphy, D.D. et al. Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J. Neurosci. 20, 3214–3220 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scott, D. et al. α-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. J. Neurosci. 32, 10129–10135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vos, M. et al. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front Synaptic Neurosci. 2, 139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schweizer, F.E. et al. The synaptic vesicle: cycle of exocytosis and endocytosis. Curr. Opin. Neurobiol. 16, 298–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Q. et al. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Park, H. et al. Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science 335, 1362–1366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Betz, W.J. et al. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200–203 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Ryan, T.A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Gaffield, M.A. et al. Imaging synaptic vesicle exocytosis and endocytosis with FM dyes. Nat. Protoc. 1, 2916–2921 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Darcy, K.J. et al. Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat. Neurosci. 9, 315–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. de Lange, R.P. et al. Two modes of vesicle recycling in the rat calyx of Held. J. Neurosci. 23, 10164–10173 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Denker, A. et al. A small pool of vesicles maintains synaptic activity in vivo. Proc. Natl. Acad. Sci. USA 108, 17177–17182 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Denker, A. et al. Revisiting synaptic vesicle pool localization in the Drosophila neuromuscular junction. J. Physiol. 587, 2919–2926 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Henkel, A.W. et al. FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc. Natl. Acad. Sci. USA 93, 1918–1923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rizzoli, S.O. et al. The structural organization of the readily releasable pool of synaptic vesicles. Science 303, 2037–2039 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Schikorski, T. et al. Morphological correlates of functionally defined synaptic vesicle populations. Nat. Neurosci. 4, 391–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Teng, H. et al. Clathrin-mediated endocytosis near active zones in snake motor boutons. J. Neurosci. 20, 7986–7993 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harata, N. et al. Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion. Proc. Natl. Acad. Sci. USA 98, 12748–12753 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Branco, T. et al. Examining size-strength relationships at hippocampal synapses using an ultrastructural measurement of synaptic release probability. J. Struct. Biol. 172, 203–210 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ratnayaka, A. et al. Extrasynaptic vesicle recycling in mature hippocampal neurons. Nat. Commun. 2, 531 (2011).

    Article  PubMed  CAS  Google Scholar 

  36. Welzel, O. et al. Systematic heterogeneity of fractional vesicle pool sizes and release rates of hippocampal synapses. Biophys. J. 100, 593–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Richards, D.A. et al. Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27, 551–559 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Richards, D.A. et al. Synaptic vesicle pools at the frog neuromuscular junction. Neuron 39, 529–541 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Paillart, C. et al. Endocytosis and vesicle recycling at a ribbon synapse. J. Neurosci. 23, 4092–4099 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marra, V. et al. A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron 76, 579–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pyle, J.L. et al. Visualization of synaptic activity in hippocampal slices with FM1-43 enabled by fluorescence quenching. Neuron 24, 803–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Zakharenko, S.S. et al. Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat. Neurosci. 4, 711–717 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Zakharenko, S.S. et al. Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 synapses. Neuron 39, 975–990 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Zakharenko, S.S. et al. Altered presynaptic vesicle release and cycling during mGluR-dependent LTD. Neuron 35, 1099–1110 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Jensen, F.E. et al. Preservation of neuronal ultrastructure in hippocampal slices using rapid microwave-enhanced fixation. J. Neurosci. Methods 29, 217–230 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Bischofberger, J. et al. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1, 2075–2081 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Debanne, D. et al. Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices. Nat. Protoc. 3, 1559–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Wellcome Trust (WT084357MF), Biotechnology and Biological Sciences Research Council (BBSRC) (BB/K019015/1), Medical Research Council (MRC) (MR/K004999/1) and European Union (EU) (FP7-308943) grants to K.S.

Author information

Authors and Affiliations

Authors

Contributions

K.S. and V.M. conceived the method and wrote the paper. F.C. validated the key steps and provided some of the figures. J.J.B. helped develop sample processing methods and carried out serial sectioning.

Corresponding author

Correspondence to Kevin Staras.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marra, V., Burden, J., Crawford, F. et al. Ultrastructural readout of functional synaptic vesicle pools in hippocampal slices based on FM dye labeling and photoconversion. Nat Protoc 9, 1337–1347 (2014). https://doi.org/10.1038/nprot.2014.088

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.088

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing