Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Design and construction of an in-plant activation cassette for transgene expression and recombinant protein production in plants

Abstract

Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6–9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the INPACT-inducible, hyperexpression platform.
Figure 2: Vectors generated for the optimization and construction of the INPACT-GOI cassette.
Figure 3: Agroinfiltration of N. tabacum leaves for transient gene expression.
Figure 4: INPACT-directed expression of human vitronectin in transgenic tobacco.

Similar content being viewed by others

References

  1. Sainsbury, F., Thuenemann, E.C. & Lomonossoff, G.P. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol. J. 7, 682–693 (2009).

    Article  CAS  Google Scholar 

  2. Marillonnet, S. et al. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat. Biotechnol. 23, 718–723 (2005).

    Article  CAS  Google Scholar 

  3. Zhang, X.R. & Mason, H. Bean yellow dwarf virus replicons for high-level transgene expression in transgenic plants and cell cultures. Biotechnol. Bioeng. 93, 271–279 (2006).

    Article  CAS  Google Scholar 

  4. Mori, M. et al. Inducible high-level mRNA amplification system by viral replicase in transgenic plants. Plant J. 27, 79–86 (2001).

    Article  CAS  Google Scholar 

  5. Werner, S. et al. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc. Natl. Acad. Sci. USA 108, 14061–14066 (2011).

    Article  CAS  Google Scholar 

  6. Lai, H.F. et al. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol. J. 10, 95–104 (2012).

    Article  CAS  Google Scholar 

  7. Toth, R.L., Pogue, G.P. & Chapman, S. Improvement of the movement and host range properties of a plant virus vector through DNA shuffling. Plant J. 30, 593–600 (2002).

    Article  CAS  Google Scholar 

  8. Lechtenberg, B. et al. Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J. 34, 507–517 (2003).

    Article  CAS  Google Scholar 

  9. Jorgensen, R.A. et al. Chalcone synthase cosuppression phenotypes in petunia flowers: Comparison of sense vs. antisense constructs and single-copy vs complex T-DNA sequences. Plant Mol. Biol. 31, 957–973 (1996).

    Article  CAS  Google Scholar 

  10. Muskens, M.W.M. et al. Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol. Biol. 43, 243–260 (2000).

    Article  CAS  Google Scholar 

  11. Lindbo, J.A. et al. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5, 1749–1759 (1993).

    Article  CAS  Google Scholar 

  12. Schubert, D. et al. Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16, 2561–2572 (2004).

    Article  CAS  Google Scholar 

  13. Vaucheret, H. et al. Transgene-induced gene silencing in plants. Plant J. 16, 651–659 (1998).

    Article  CAS  Google Scholar 

  14. Dugdale, B. et al. In Plant Activation: an inducible, hyperexpression platform for recombinant protein production in plants. Plant Cell 25, 2429–2443 (2013).

    Article  CAS  Google Scholar 

  15. Caddick, M.X. et al. An ethanol-inducible gene switch for plants used to manipulate carbon metabolism. Nat. Biotechnol. 16, 177–180 (1998).

    Article  CAS  Google Scholar 

  16. Stenger, D.C., Davis, K.R. & Bisaro, D.M. Limited replication of tomato golden mosaic virus DNA in explants of nonhost species. Mol. Plant Microbe Interact. 5, 525–527 (1992).

    Article  CAS  Google Scholar 

  17. Teng, K.L. et al. Involvement of C4 protein of beet severe curly top virus (family Geminiviridae) in virus movement. PLoS ONE 5, e11280 (2010).

    Article  Google Scholar 

  18. Kinkema, M. et al. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane. Plant Mol. Biol. 84, 443–454 (2013).

    Article  Google Scholar 

  19. Wright, E.A. et al. Splicing features in maize streak virus virion- and complementary-sense gene expression. Plant J. 12, 1285–1297 (1997).

    Article  CAS  Google Scholar 

  20. Boulton, M.I. Functions and interactions of Mastrevirus gene products. Physiol. Mol. Plant Pathol. 60, 243–255 (2002).

    Article  CAS  Google Scholar 

  21. Horvath, G.V. et al. Prediction of functional regions of the maize streak virus replication-associated proteins by protein-protein interaction analysis. Plant Mol. Biol. 38, 699–712 (1998).

    Article  CAS  Google Scholar 

  22. Liu, L. et al. Bean yellow dwarf virus RepA, but not Rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif. Virology 256, 270–279 (1999).

    Article  CAS  Google Scholar 

  23. Xie, Q., Suarezlopez, P. & Gutierrez, C. Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J. 14, 4073–4082 (1995).

    Article  CAS  Google Scholar 

  24. Salter, M.G. et al. Characterisation of the ethanol-inducible alc gene expression system for transgenic plants. Plant J. 16, 127–132 (1998).

    Article  CAS  Google Scholar 

  25. Deveaux, Y. et al. The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J. 36, 918–930 (2003).

    Article  CAS  Google Scholar 

  26. Laufs, P. et al. Separable roles of UFO during floral development revealed by conditional restoration of gene function. Development 130, 785–796 (2003).

    Article  CAS  Google Scholar 

  27. Roslan, H.A. et al. Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 28, 225–235 (2001).

    Article  CAS  Google Scholar 

  28. Filichkin, S.A. et al. Alcohol-inducible gene expression in transgenic Populus. Plant Cell Rep. 25, 660–667 (2006).

    Article  CAS  Google Scholar 

  29. Garoosi, G.A. et al. Characterization of the ethanol-inducible alc gene expression system in tomato. J. Exp. Botany 56, 1635–1642 (2005).

    Article  CAS  Google Scholar 

  30. Sweetman, J.P. et al. Ethanol vapor is an efficient inducer of the alc gene expression system in model and crop plant species. Plant Physiol. 129, 943–948 (2002).

    Article  CAS  Google Scholar 

  31. Moore, I., Samalova, M. & Kurup, S. Transactivated and chemically inducible gene expression in plants. Plant J. 45, 651–683 (2006).

    Article  CAS  Google Scholar 

  32. Jia, H. et al. Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis. Plant Biotechnol. J. 5, 477–482 (2007).

    Article  CAS  Google Scholar 

  33. Outchkourov, N.S. et al. The promoter-terminator of chrysanthemunm rbcS1 directs very high expression levels in plants. Planta 216, 1003–1012 (2003).

    CAS  PubMed  Google Scholar 

  34. Kay, R. et al. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236, 1299–1302 (1987).

    Article  CAS  Google Scholar 

  35. Dey, N. & Maiti, I.B. Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol. Biol. 40, 771–782 (1999).

    Article  CAS  Google Scholar 

  36. Dey, N. & Maiti, I.B. Further characterization and expression analysis of mirabilis mosaic caulimovirus (MMV) full-length transcript promoter with single and double enhancer domains in transgenic plants. Transgenics 3, 61 (1999).

    CAS  Google Scholar 

  37. Maiti, I.B. et al. Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res. 6, 143–156 (1997).

    Article  CAS  Google Scholar 

  38. Maiti, I.B. & Shepherd, R.J. Isolation and expression analysis of peanut chlorotic streak caulimovirus (PCISV) full-length transcript (FLt) promoter in transgenic plants. Biochem. Biophys. Res. Commun. 244, 440–444 (1998).

    Article  CAS  Google Scholar 

  39. Gallie, D.R. et al. A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 15, 8693–8711 (1987).

    Article  CAS  Google Scholar 

  40. Datla, R.S.S. et al. Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci. 94, 139–149 (1993).

    Article  CAS  Google Scholar 

  41. Sainsbury, F. & Lomonossoff, G.P. Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol. 148, 1212–1218 (2008).

    Article  CAS  Google Scholar 

  42. Donson, J. et al. A putative primer for second-strand DNA synthesis of maize streak virus is virion-associated. EMBO J. 3, 3069–3073 (1984).

    Article  CAS  Google Scholar 

  43. Hayes, R.J. et al. Priming of complementary DNA synthesis in vitro by small DNA molecules tightly bound to virion DNA of wheat dwarf virus. J. General Virol. 69, 1345–1350 (1988).

    Article  CAS  Google Scholar 

  44. Morris, B.A.M. et al. The nucleotide sequence of the infectious cloned DNA component of tobacco yellow dwarf virus reveals features of geminiviruses infecting monocotyledonous plants. Virology 187, 633–642 (1992).

    Article  CAS  Google Scholar 

  45. Maclean, J. et al. Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J. General Virol. 88, 1460–1469 (2007).

    Article  CAS  Google Scholar 

  46. Rose, A.B. The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. Plant J. 40, 744–751 (2004).

    Article  CAS  Google Scholar 

  47. Goodall, G.J. & Filipowicz, W. The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58, 473–483 (1989).

    Article  CAS  Google Scholar 

  48. Baynton, C.E. et al. U-rich tracts enhance 3′ splice site recognition in plant nuclei. Plant J. 10, 703–711 (1996).

    Article  CAS  Google Scholar 

  49. Simpson, C.G. et al. Dual functionality of a plant U-rich intronic sequence element. Plant J. 37, 82–91 (2004).

    Article  CAS  Google Scholar 

  50. Wang, B.B. & Brendel, V. Genomewide comparative analysis of alternative splicing in plants. Proc. Natl. Acad. Sci. USA 103, 7175–7180 (2006).

    Article  CAS  Google Scholar 

  51. Luo, Z. & Chen, Z. Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. Plant Cell 19, 943–958 (2007).

    Article  CAS  Google Scholar 

  52. Southern, E. Southern blotting. Nat. Protoc. 1, 518–525 (2006).

    Article  CAS  Google Scholar 

  53. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A labratory Manual (Cold Spring Harbor Labratory Press, 1989).

Download references

Acknowledgements

We thank the Australian Research Council for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

B.D. and C.L.M. designed and performed experiments, analyzed data and wrote the manuscript. M.K. and T.A.J. designed and performed experiments and analyzed data. J.L.D. and R.M.H. designed experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to James L Dale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data

Syntron and LIR sequence (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dugdale, B., Mortimer, C., Kato, M. et al. Design and construction of an in-plant activation cassette for transgene expression and recombinant protein production in plants. Nat Protoc 9, 1010–1027 (2014). https://doi.org/10.1038/nprot.2014.068

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.068

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing