Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy

Abstract

During the past decades, several methods (e.g., electron microscopy, flow chamber experiments, surface chemical analysis, surface charge and surface hydrophobicity measurements) have been developed to investigate the mechanisms controlling the adhesion of microbial cells to other cells and to various other substrates. However, none of the traditional approaches are capable of looking at adhesion forces at the single-cell level. In recent years, atomic force microscopy (AFM) has been instrumental in measuring the forces driving microbial adhesion on a single-cell basis. The method, known as single-cell force spectroscopy (SCFS), consists of immobilizing a single living cell on an AFM cantilever and measuring the interaction forces between the cellular probe and a solid substrate or another cell. Here we present SCFS protocols that we have developed for quantifying the cell adhesion forces of medically important microbes. Although we focus mainly on the probiotic bacterium Lactobacillus plantarum, we also show that our procedures are applicable to pathogens, such as the bacterium Staphylococcus epidermidis and the yeast Candida albicans. For well-trained microscopists, the entire protocol can be mastered in 1 week.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of SCFS.
Figure 2: Measurement of the specific (glycopolymer) and nonspecific (hydrophobic) interactions of probiotic bacteria.
Figure 3: Quantification of the specific forces engaged in bacterial-fungal interactions.

Similar content being viewed by others

References

  1. Busscher, H.J., Norde, W. & van der Mei, H.C. Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl. Environ. Microb. 74, 2559–2564 (2008).

    Article  CAS  Google Scholar 

  2. Busscher, H.J. & van der Mei, H.C. How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog. 8, e1002440 (2012).

    Article  CAS  Google Scholar 

  3. Camesano, T.A., Liu, Y. & Datta, M. Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques. Adv. Water. Resour. 30, 1470–1491 (2007).

    Article  CAS  Google Scholar 

  4. Brehm-Stecher, B.F. & Johnson, E.A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. R. 68, 538–559 (2004).

    Article  CAS  Google Scholar 

  5. Lidstrom, M.E. & Konopka, M.C. The role of physiological heterogeneity in microbial population behavior. Nat. Chem. Biol. 6, 705–712 (2010).

    Article  CAS  Google Scholar 

  6. Müller, D.J. & Dufrêne, Y.F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008).

    Article  Google Scholar 

  7. Müller, D.J., Helenius, J., Alsteens, D. & Dufrêne, Y.F. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009).

    Article  Google Scholar 

  8. Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H.E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2, 313–317 (2000).

    Article  CAS  Google Scholar 

  9. Benoit, M. & Gaub, H.E. Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cells Tissues Organs 172, 174–189 (2002).

    Article  CAS  Google Scholar 

  10. Helenius, J., Heisenberg, C.P., Gaub, H.E. & Muller, D.J. Single-cell force spectroscopy. J. Cell. Sci. 121, 1785–1791 (2008).

    Article  CAS  Google Scholar 

  11. Le, D.T.L., Guérardel, Y., Loubière, P., Mercier-Bonin, M. & Dague, E. Measuring kinetic dissociation/association constants between Lactococcus lactis bacteria and mucins using living cell probes. Biophys. J. 101, 2843–2853 (2011).

    Article  CAS  Google Scholar 

  12. Ovchinnikova, E.S., Krom, B.P., van der Mei, H.C. & Busscher, H.J. Force microscopic and thermodynamic analysis of the adhesion between Pseudomonas aeruginosa and Candida albicans. Soft Matter 8, 6454–6461 (2012).

    Article  CAS  Google Scholar 

  13. Lower, S.K., Hochella, M.F. Jr & Beveridge, T.J. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292, 1360–1363 (2001).

    Article  CAS  Google Scholar 

  14. Emerson, R.J. IV et al. Microscale correlation between surface chemistry, texture, and the adhesive strength of Staphylococcus epidermidis. Langmuir 22, 11311–11321 (2006).

    Article  CAS  Google Scholar 

  15. Bowen, W.R., Lovitt, R.W. & Wright, C.J. Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae. J. Colloid Inter. Sci. 237, 54–61 (2001).

    Article  CAS  Google Scholar 

  16. Razatos, A., Ong, Y.L., Sharma, M.M. & Georgiou, G. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc. Natl. Acad. Sci. USA 95, 11059–11064 (1998).

    Article  CAS  Google Scholar 

  17. Kang, S. & Elimelech, M. Bioinspired single bacterial cell force spectroscopy. Langmuir 25, 9656–9659 (2009).

    Article  CAS  Google Scholar 

  18. Beaussart, A. et al. Single-cell force spectroscopy of probiotic bacteria. Biophys. J. 104, 1886–1892 (2013).

    Article  CAS  Google Scholar 

  19. Ong, Y.L., Razatos, A., Georgiou, G. & Sharma, M.M. Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir 15, 2719–2725 (1999).

    Article  CAS  Google Scholar 

  20. Meister, A. et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9, 2501–2507 (2009).

    Article  CAS  Google Scholar 

  21. Dörig, P. et al. Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology. Appl. Phys. Lett. 97, 023701 (2010).

    Article  Google Scholar 

  22. Beaussart, A. et al. Single-cell force spectroscopy of the medically important Staphylococcus epidermidisCandida albicans interaction. Nanoscale 5, 10894–10900 (2013).

    Article  CAS  Google Scholar 

  23. Herman, P. et al. Forces driving the attachment of Staphylococcus epidermidis to fibrinogen-coated surfaces. Langmuir 29, 13018–13022 (2013).

    Article  CAS  Google Scholar 

  24. Alsteens, D., van Dijck, P., Lipke, P.N. & Dufrêne, Y.F. Quantifying the forces driving cell-cell adhesion in a fungal pathogen. Langmuir 29, 13473–13480 (2013).

    Article  CAS  Google Scholar 

  25. Alsteens, D. et al. Single-cell force spectroscopy of Als-mediated fungal adhesion. Anal. Methods 5, 3657–3662 (2013).

    Article  CAS  Google Scholar 

  26. Lee, H., Dellatore, S.M., Miller, W.M. & Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007).

    Article  CAS  Google Scholar 

  27. Francius, G. et al. Stretching polysaccharides on live cells using single molecule force spectroscopy. Nat. Protoc. 4, 939–946 (2009).

    Article  CAS  Google Scholar 

  28. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H.E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  29. Marszalek, P.E., Oberhauser, A.F., Pang, Y.P. & Fernandez, J.M. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396, 661–664 (1998).

    Article  CAS  Google Scholar 

  30. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  31. Oberhauser, A.F., Hansma, P.K., Carrion-Vazquez, M. & Fernandez, J.M. Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl. Acad. Sci. USA 98, 468–472 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work at the Université Catholique de Louvain was supported by the National Foundation for Scientific Research (FNRS), the Université Catholique de Louvain (Fondation Louvain-Prix De Merre), the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme) and the Research Department of the Communauté Française de Belgique (Concerted Research Action). Y.F.D. and D.A. are Research Director and Postdoctoral Researcher of the Fonds de la Recherche Scientifique (FRS)-FNRS, respectively.

Author information

Authors and Affiliations

Authors

Contributions

A.B., S.E.-K.-C., R.M.A.S., D.A., P.H., S.D. and Y.F.D. designed the research; A.B., S.E.-K.-C., R.M.A.S., D.A., P.H. and S.D. performed the research; A.B., S.E.-K.-C., R.M.A.S., D.A., P.H., S.D. and Y.F.D. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Yves F Dufrêne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaussart, A., El-Kirat-Chatel, S., Sullan, R. et al. Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy. Nat Protoc 9, 1049–1055 (2014). https://doi.org/10.1038/nprot.2014.066

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.066

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing