Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM

Abstract

A current challenge in the life sciences is to understand how the properties of individual molecular machines adjust in order to meet the functional requirements of the cell. Recent developments in force-distance (FD) curve–based atomic force microscopy (FD-based AFM) enable researchers to combine sub-nanometer imaging with quantitative mapping of physical, chemical and biological properties. Here we present a protocol to apply FD-based AFM to the multiparametric imaging of native proteins under physiological conditions. We describe procedures for experimental FD-based AFM setup, high-resolution imaging of proteins in the native unperturbed state with simultaneous quantitative mapping of multiple parameters, and data interpretation and analysis. The protocol, which can be completed in 1–3 d, enables researchers to image proteins and protein complexes in the native unperturbed state and to simultaneously map their biophysical and biochemical properties at sub-nanometer resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of FD curve–based AFM for imaging and mapping multiple properties of biological samples.
Figure 2: High-resolution FD-based AFM images of membrane proteins and fibrillated water-soluble proteins.
Figure 3: Approach and retraction FD curves recorded on supporting surfaces.
Figure 4: FD-based AFM images of purple membrane adsorbed onto mica.
Figure 5: High-resolution FD-based AFM of the extracellular purple membrane surface reveals sub-structural details of bacteriorhodopsin trimers.

Similar content being viewed by others

References

  1. Roux, B. & MacKinnon, R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285, 100–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Karplus, M. & Gao, Y.Q. Biomolecular motors: the F1-ATPase paradigm. Curr. Opin. Struct. Biol. 14, 250–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Sotomayor, M. & Schulten, K. Single-molecule experiments in vitro andin silico. Science 316, 1144–1148 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Whorton, M.R. & MacKinnon, R. X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature 498, 190–197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stansfeld, P.J. & Sansom, M.S. Molecular simulation approaches to membrane proteins. Structure 19, 1562–1572 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Risselada, H.J. & Grubmuller, H. How SNARE molecules mediate membrane fusion: recent insights from molecular simulations. Curr. Opin. Struct. Biol. 22, 187–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Dufrene, Y.F. et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nat. Methods 8, 123–127 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Veigel, C. & Schmidt, C.F. Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat. Rev. Mol. Cell Biol. 12, 163–176 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Ha, T. Single-molecule approaches embrace molecular cohorts. Cell 154, 723–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Larson, J.D., Rodgers, M.L. & Hoskins, A.A. Visualizing cellular machines with colocalization single molecule microscopy. Chem. Soc. Rev. 43, 1189–1200 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Heinz, W.F. & Hoh, J.H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol. 17, 143–150 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Dufrene, Y.F., Martinez-Martin, D., Medalsy, I., Alsteens, D. & Muller, D.J. Multiparametric imaging of biological systems by force-distance curve–based AFM. Nat. Methods 10, 847–854 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Binnig, G., Quate, C.F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Gerber, C. & Lang, H.P. How the doors to the nanoworld were opened. Nat. Nanotechnol. 1, 3–5 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Muller, D.J. & Dufrene, Y.F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3, 261–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Drake, B. et al. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586–1589 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Karrasch, S., Hegerl, R., Hoh, J., Baumeister, W. & Engel, A. Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc. Natl. Acad. Sci. USA 91, 836–838 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schabert, F.A., Henn, C. & Engel, A. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 268, 92–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Mou, J., Yang, J. & Shao, Z. Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J. Mol. Biol. 248, 507–512 (1995).

    CAS  PubMed  Google Scholar 

  20. Müller, D.J., Schabert, F.A., Büldt, G. & Engel, A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys. J. 68, 1681–1686 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Muller, D.J. & Engel, A. Atomic force microscopy and spectroscopy of native membrane proteins. Nat. Protoc. 2, 2191–2197 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Heymann, J.B. et al. Charting the surfaces of the purple membrane. J. Struct. Biol. 128, 243–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Muller, D.J., Sass, H.J., Muller, S.A., Buldt, G. & Engel, A. Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J. Mol. Biol. 285, 1903–1909 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Müller, D.J. & Engel, A. Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J. Mol. Biol. 285, 1347–1351 (1999).

    Article  PubMed  Google Scholar 

  25. Engel, A. & Muller, D.J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 7, 715–718 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Bippes, C.A. & Muller, D.J. High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Rep. Progr. Phys. 74, 086601 (2011).

    Article  CAS  Google Scholar 

  27. Müller, D.J., Baumeister, W. & Engel, A. Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans imaged by atomic force microscopy. J. Bacteriol. 178, 3025–3030 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mari, S.A. et al. pH-induced conformational change of the β-barrel–forming protein OmpG reconstituted into native E. coli lipids. J. Mol. Biol. 396, 610–616 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Müller, D.J., Hand, G.M., Engel, A. & Sosinsky, G. Conformational changes in surface structures of isolated Connexin26 gap junctions. EMBO J. 21, 3598–3607 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yu, J., Bippes, C.A., Hand, G.M., Muller, D.J. & Sosinsky, G.E. Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J. Biol. Chem. 282, 8895–8904 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Shibata, M., Uchihashi, T., Yamashita, H., Kandori, H. & Ando, T. Structural changes in bacteriorhodopsin in response to alternate illumination observed by high-speed atomic force microscopy. Angew. Chem. Int. Ed. Engl. 50, 4410–4413 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Shibata, M., Yamashita, H., Uchihashi, T., Kandori, H. & Ando, T. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat. Nanotechnol. 5, 208–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Shinozaki, Y. et al. Direct observation of ATP-induced conformational changes in single P2X4 receptors. PLoS Biol. 7, e1000103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mari, S.A. et al. Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc. Natl. Acad. Sci. USA 108, 20802–20807 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sumino, A., Sumikama, T., Iwamoto, M., Dewa, T. & Oiki, S. The open gate structure of the membrane-embedded KcsA potassium channel viewed from the cytoplasmic side. Sci. Rep. 3, 1063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fotiadis, D. et al. Surface analysis of the photosystem I complex by electron and atomic force microscopy. J. Mol. Biol. 283, 83–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Reviakine, I., Bergsma-Schutter, W. & Brisson, A. Growth of protein 2D crystals on supported planar lipid bilayers imaged in situ by AFM. J. Struct. Biol. 121, 356–361 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Seelert, H. et al. Proton powered turbine of a plant motor. Nature 405, 418–419 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Muller, D.J. et al. ATP synthase: constrained stoichiometry of the transmembrane rotor. FEBS Lett. 504, 219–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Muller, D.J. et al. Observing membrane protein diffusion at subnanometer resolution. J. Mol. Biol. 327, 925–930 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Czajkowsky, D.M., Hotze, E.M., Shao, Z. & Tweten, R.K. Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane. EMBO J. 23, 3206–3215 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamashita, H. et al. Single-molecule imaging on living bacterial cell surface by high-speed AFM. J. Mol. Biol. 422, 300–309 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Zhong, Q., Inniss, D., Kjoller, K. & Elings, V. Fractured polymer silica fiber surface studied by tapping mode atomic-force microscopy. Surf. Sci. 290, L688–L692 (1993).

    Article  CAS  Google Scholar 

  44. Hansma, P.K. et al. Tapping mode atomic-force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740 (1994).

    Article  CAS  Google Scholar 

  45. Putman, C.A.J., Vanderwerf, K.O., Degrooth, B.G., Vanhulst, N.F. & Greve, J. Tapping mode atomic-force microscopy in liquid. Appl. Phys. Lett. 64, 2454–2456 (1994).

    Article  CAS  Google Scholar 

  46. Bezanilla, M. et al. Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys. J. 67, 2454–2459 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Radmacher, M., Fritz, M., Hansma, H.G. & Hansma, P.K. Direct observation of enzyme activity with the atomic force microscopy. Science 265, 1577–1579 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Fritz, M. et al. Imaging microtubules in buffer solution using tapping mode atomic force microscopy. SPIE 2384, 150–157 (1995).

    CAS  Google Scholar 

  49. Martin, L.D., Vesenka, J.P., Henderson, E. & Dobbs, D.L. Visualization of nucleosomal substructure in native chromatin by atomic force microscopy. Biochem. 34, 4610–4616 (1995).

    Article  CAS  Google Scholar 

  50. Dunlap, D.D., Maggi, A., Soria, M.R. & Monaco, L. Nanoscopic structure of DNA condensed for gene delivery. Nucl. Acids Res. 25, 3095–3101 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kasas, S. et al. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36, 461–468 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Lyubchenko, Y.L. & Shlyakhtenko, L.S. Direct visualization of supercoiled DNA in situ with atomic force microscopy. Proc. Natl. Acad. Sci. USA 94, 496–501 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Franz, C.M. & Muller, D.J. Analysing focal adhesion structure by AFM. J. Cell Sci. 118, 5315–5323 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Elie-Caille, C. et al. Straight GDP-tubulin protofilaments form in the presence of taxol. Curr. Biol. 17, 1765–1770 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Erler, A. et al. Conformational adaptability of Redβ during DNA annealing and implications for its structural relationship with Rad52. J. Mol. Biol. 391, 586–598 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Wegmann, S. et al. Human tau isoforms assemble into ribbon-like fibrils that display polymorphic structure and stability. J. Biol. Chem. 285, 27302–27313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Möller, C., Allen, M., Elings, V., Engel, A. & Müller, D.J. Tapping mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys. J. 77, 1050–1058 (1999).

    Article  Google Scholar 

  59. Stark, M., Moller, C., Muller, D.J. & Guckenberger, R. From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. Biophys. J. 80, 3009–3018 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garcia, R. & Perez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002).

    Article  CAS  Google Scholar 

  61. Stark, M., Stark, R.W., Heckl, W.M. & Guckenberger, R. Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc. Natl. Acad. Sci. USA 99, 8473–8478 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Basak, S. & Raman, A. Dynamics of tapping mode atomic force microscopy in liquids: theory and experiments. Appl. Phys. Lett. 91, 064107 (2007).

    Article  CAS  Google Scholar 

  63. Garcia, R. & Herruzo, E.T. The emergence of multifrequency force microscopy. Nat. Nanotechnol. 7, 217–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Argaman, M., Golan, R., Thomson, N.H. & Hansma, H.G. Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope. Nucleic Acids Res. 25, 4379–4383 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Viani, M.B. et al. Probing protein-protein interactions in real time. Nat. Struct. Biol. 7, 644–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333, 755–758 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Hoh, J.H., Lal, R., John, S.A., Revel, J.-P. & Arnsdorf, M.F. Atomic force microscopy and dissection of gap junctions. Science 253, 1405–1408 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Hansma, H.G. et al. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256, 1180–1184 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Thalhammer, S., Stark, R.W., Muller, S., Wienberg, J. & Heckl, W.M. The atomic force microscope as a new microdissecting tool for the generation of genetic probes. J. Struct. Biol. 119, 232–237 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Weisenhorn, A.L., Hansma, P.K., Albrecht, T.R. & Quate, C.F. Forces in atomic force microscopy in air and water. Appl. Phys. Lett. 54, 2651–2653 (1989).

    Article  Google Scholar 

  71. Butt, H.J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 60, 1438–1444 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ducker, W.A., Senden, T.J. & Pashley, R.M. Direct measurement of colloidal forces using an atomic force microscope. Nature 353, 239–241 (1991).

    Article  CAS  Google Scholar 

  73. Butt, H.J. Electrostatic interaction in scanning probe microscopy when imaging in electrolyte solutions. Nanotechnology 3, 60–68 (1992).

    Article  Google Scholar 

  74. Weisenhorn, A.L., Maivald, P., Butt, H.J. & Hansma, P.K. Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 45, 11226–11232 (1992).

    Article  CAS  Google Scholar 

  75. Knapp, H.F., Wiegrabe, W., Heim, M., Eschrich, R. & Guckenberger, R. Atomic force microscope measurements and manipulation of Langmuir-Blodgett films with modified tips. Biophys. J. 69, 708–715 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Butt, H.J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005).

    Article  CAS  Google Scholar 

  77. Lee, G.U., Kidwell, D.A. & Colton, R.J. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10, 354–357 (1994).

    Article  CAS  Google Scholar 

  78. Florin, E.-L., Moy, V.T. & Gaub, H.E. Adhesion forces between individual ligand-receptor pairs. Science 264, 415–417 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Moy, V.T., Florin, E.-L. & Gaub, H.E. Intermolecular forces and energies between ligands and receptors. Science 266, 257–259 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Radmacher, M., Cleveland, J.P., Fritz, M., Hansma, H.G. & Hansma, P.K. Mapping interaction forces with the atomic force microscope. Biophys. J. 66, 2159–2165 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ludwig, M., Dettmann, W. & Gaub, H.E. Atomic force microscope imaging contrast based on molecular recognition. Biophys. J. 72, 445–448 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gad, M., Itoh, A. & Ikai, A. Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol. Int. 21, 697–706 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Grandbois, M., Dettmann, W., Benoit, M. & Gaub, H.E. Affinity imaging of red blood cells using an atomic force microscope. J. Histochem. Cytochem. 48, 719–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Hinterdorfer, P. & Dufrene, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Roos, W.H., Bruinsma, R. & Wuite, G.J.L. Physical virology. Nat. Phys. 6, 733–743 (2010).

    Article  CAS  Google Scholar 

  86. Alsteens, D., Trabelsi, H., Soumillion, P. & Dufrene, Y.F. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 4, 2926 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Medalsy, I., Hensen, U. & Muller, D.J. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM. Angew. Chem. Int. Ed. Engl. 50, 12103–12108 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Thoma, J., Bosshart, P., Pfreundschuh, M. & Muller, D.J. Out but not in: the large transmembrane β-barrel protein FhuA unfolds but cannot refold via β-hairpins. Structure 20, 2185–2190 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Pfreundschuh, M., Hensen, U. & Muller, D.J. Quantitative imaging of the electrostatic field and potential generated by a single transmembrane protein at subnanometer resolution. Nano Lett. 13, 5585–5593 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Sweers, K.K., van der Werf, K.O., Bennink, M.L. & Subramaniam, V. Atomic force microscopy under controlled conditions reveals structure of C-terminal region of α-synuclein in amyloid fibrils. ACS Nano 6, 5952–5960 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, S. et al. Coexistence of ribbon and helical fibrils originating from hIAPP20–29 revealed by quantitative nanomechanical atomic force microscopy. Proc. Natl. Acad. Sci. USA 110, 2798–2803 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wegmann, S., Medalsy, I.D., Mandelkow, E. & Muller, D.J. The fuzzy coat of pathological human tau fibrils is a two-layered polyelectrolyte brush. Proc. Natl. Acad. Sci. USA 110, E313–E321 (2013).

    Article  PubMed  Google Scholar 

  93. Muller, D.J., Buldt, G. & Engel, A. Force-induced conformational change of bacteriorhodopsin. J. Mol. Biol. 249, 239–243 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Butt, H.-J., Prater, C.B. & Hansma, P.K. Imaging purple membranes dry and in water with the atomic force microscope. J. Vac. Sci. Technol. B9, 1193–1197 (1991).

    Article  Google Scholar 

  95. Butt, H.J. Measuring local surface charge densities in electrolyte solutions with a scanning-force microscope. Biophys. J. 63, 578–582 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Muller, D.J. et al. Atomic force microscopy of native purple membrane. Biochim. Biophys. Acta 1460, 27–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Oesterhelt, F. et al. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Muller, D.J. et al. Stability of bacteriorhodopsin α-helices and loops analyzed by single-molecule force spectroscopy. Biophys. J. 83, 3578–3588 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Janovjak, H., Kessler, M., Oesterhelt, D., Gaub, H. & Muller, D.J. Unfolding pathways of native bacteriorhodopsin depend on temperature. EMBO J. 22, 5220–5229 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kienberger, F., Kada, G., Mueller, H. & Hinterdorfer, P. Single-molecule studies of antibody-antigen interaction strength versus intramolecular antigen stability. J. Mol. Biol. 347, 597–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Kessler, M., Gottschalk, K.E., Janovjak, H., Muller, D.J. & Gaub, H.E. Bacteriorhodopsin folds into the membrane against an external force. J. Mol. Biol. 357, 644–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Muller, D.J. et al. Single-molecule studies of membrane proteins. Curr. Opin. Struct. Biol. 16, 489–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Medalsy, I.D. & Muller, D.J. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS Nano 7, 2642–2650 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T. & Cooper, G.J. Watching amyloid fibrils grow by time-lapse atomic force microscopy. J. Mol. Biol. 285, 33–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Yip, C.M. & McLaurin, J. Amyloid-β peptide assembly: a critical step in fibrillogenesis and membrane disruption. Biophys. J. 80, 1359–1371 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grundke-Iqbal, I. et al. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem. 261, 6084–6089 (1986).

    CAS  PubMed  Google Scholar 

  107. Mandelkow, E.M. & Mandelkow, E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb. Perspect. Med. 2, a006247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tanaka, M. & Sackmann, E. Polymer-supported membranes as models of the cell surface. Nature 437, 656–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Muller, D.J. & Engel, A. Strategies to prepare and characterize native membrane proteins and protein membranes by AFM. Curr. Opin. Coll. Int. Sci. 13, 338–350 (2008).

    Article  CAS  Google Scholar 

  110. Muller, D.J., Amrein, M. & Engel, A. Adsorption of biological molecules to a solid support for scanning probe microscopy. J. Struct. Biol. 119, 172–188 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Fotiadis, D., Scheuring, S., Muller, S.A., Engel, A. & Muller, D.J. Imaging and manipulation of biological structures with the AFM. Micron 33, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Pashley, R.M. Hydration forces between mica surfaces in aqueous electrolyte solutions. J. Coll. Interf. Sci. 80, 153–162 (1981).

    Article  CAS  Google Scholar 

  113. Bailey, S.W. (Ed.) Micas. Rev. Mineral. 13 (1984).

  114. Gerischer, H., McIntyre, R., Scherson, D. & Storck, W. Density of the electronic states of graphite: derivation from differential capacitance measurements. J. Phys. Chem. 91, 1930–1935 (1987).

    Article  CAS  Google Scholar 

  115. Martínez-Martín, D. et al. Atmospheric contaminants on graphitic surfaces. Carbon 61, 33–39 (2013).

    Article  CAS  Google Scholar 

  116. Neuman, K.C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Muller, D.J., Helenius, J., Alsteens, D. & Dufrene, Y.F. Force-probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Alcaraz, J. et al. Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18, 716–721 (2002).

    Article  CAS  Google Scholar 

  119. Janovjak, H., Struckmeier, J. & Muller, D.J. Hydrodynamic effects in fast AFM single-molecule force measurements. Eur. Biophys. J. 34, 91–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Viani, M.B. et al. Small cantilevers for force spectroscopy of single molecules. J. Appl. Phys. 86, 2258–2262 (1999).

    Article  CAS  Google Scholar 

  121. Hansma, P.K., Schitter, G., Fantner, G.E. & Prater, C. Applied physics. High-speed atomic force microscopy. Science 314, 601–602 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Zimmermann, J.L., Nicolaus, T., Neuert, G. & Blank, K. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat. Protoc. 5, 975–985 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Martinez-Martin, D., Herruzo, E.T., Dietz, C., Gomez-Herrero, J. & Garcia, R. Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys. Rev. Lett. 106, 198101 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Martinez-Martin, D. et al. Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy. PLoS ONE 7, e30204 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rotsch, C. & Radmacher, M. Mapping local electrostatic forces with the atomic force microscope. Langmuir 13, 2825–2832 (1997).

    Article  CAS  Google Scholar 

  126. Matzke, R., Jacobson, K. & Radmacher, M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat. Cell Biol. 3, 607–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Heu, C., Berquand, A., Elie-Caille, C. & Nicod, L. Glyphosate-induced stiffening of HaCaT keratinocytes, a peak force tapping study on living cells. J. Struct. Biol. 178, 1–7 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Carrasco, C. et al. Built-in mechanical stress in viral shells. Biophys. J. 100, 1100–1108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dong, M., Husale, S. & Sahin, O. Determination of protein structural flexibility by microsecond force spectroscopy. Nat. Nanotechnol. 4, 514–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Picas, L., Rico, F., Deforet, M. & Scheuring, S. Structural and mechanical heterogeneity of the erythrocyte membrane reveals membrane stability. ACS Nano 7, 1054–1063 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Grant, C.A., Brockwell, D.J., Radford, S.E. & Thomson, N.H. Tuning the elastic modulus of hydrated collagen fibrils. Biophys. J. 97, 2985–2992 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sweers, K., van der Werf, K., Bennink, M. & Subramaniam, V. Nanomechanical properties of alpha-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM. Nanoscale Res. Lett. 6, 270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sullan, R.M., Li, J.K. & Zou, S. Direct correlation of structures and nanomechanical properties of multicomponent lipid bilayers. Langmuir 25, 7471–7477 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Li, J.K., Sullan, R.M. & Zou, S. Atomic force microscopy force mapping in the study of supported lipid bilayers. Langmuir 27, 1308–1313 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Rief, M., Fernandez, J.M. & Gaub, H.E. Elastically coupled two-level-systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764–4767 (1998).

    Article  CAS  Google Scholar 

  136. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H.E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Rief, M., Clausen-Schaumann, H. & Gaub, H.E. Sequence-dependent mechanics of single DNA molecules. Nat. Struct. Biol. 6, 346–349 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Higgins, M.J. et al. Structured water layers adjacent to biological membranes. Biophys. J. 91, 2532–2542 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pelling, A.E., Sehati, S., Gralla, E.B., Valentine, J.S. & Gimzewski, J.K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305, 1147–1150 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Baclayon, M., Roos, W.H. & Wuite, G.J. Sampling protein form and function with the atomic force microscope. Mol. Cell Proteomics 9, 1678–1688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hertz, H. Über die Berührung fester elastischer Körper. Reine Angew. Math. 92, 156–171 (1881).

    Google Scholar 

  142. Johnson, K.L., Kendall, K. & Roberts, A.D. Surface energy and contact of elastic solids. Proc. R. Soc. A 324, 301–313 (1971).

    Article  CAS  Google Scholar 

  143. Derjaguin, B.V., Muller, V.M. & Toporov, Y.P. Effect of contact deformations on adhesion of particles. J. Coll. Interf. Sci. 53, 314–326 (1975).

    Article  CAS  Google Scholar 

  144. Muller, V.M., Yushchenko, V.S. & Derjaguin, B.V. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J. Coll. Interf. Sci. 77, 91–101 (1980).

    Article  CAS  Google Scholar 

  145. Muller, V.M., Derjaguin, B.V. & Toporov, Y.P. On 2 methods of calculation of the force of sticking of an elastic sphere to a rigid plane. Coll. Surf. 7, 251–259 (1983).

    Article  CAS  Google Scholar 

  146. Oesterhelt, D. & Stoeckenius, W. Isolation of the cell membrane of Halobacterium halobium and its fraction into red and purple membrane. Methods Enzymol. 31, 667–678 (1974).

    Article  CAS  PubMed  Google Scholar 

  147. Barghorn, S., Biernat, J. & Mandelkow, E. Purification of recombinant tau protein and preparation of Alzheimer-paired helical filaments in vitro. Methods Mol. Biol. 299, 35–51 (2005).

    CAS  PubMed  Google Scholar 

  148. Müller, D.J., Engel, A. & Amrein, M. Preparation techniques for the observation of native biological systems with the atomic force microscope. Biosens. Bioelect. 12, 867–877 (1997).

    Article  Google Scholar 

  149. Sader, J.E. & White, L. Theoretical analysis of the static deflection of plates for atomic force microscope applications. J. Appl. Phys. 74, 1–9 (1993).

    Article  CAS  Google Scholar 

  150. Butt, H.J. & Jaschke, M. Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6, 1–7 (1995).

    Article  Google Scholar 

  151. Florin, E.L. et al. Sensing specific molecular-interactions with the atomic-force microscope. Biosensors Bioelectron. 10, 895–901 (1995).

    Article  CAS  Google Scholar 

  152. Hutter, J.L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instr. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

  153. te Riet, J. et al. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. Ultramicroscopy 111, 1659–1669 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Engel, A., Schoenenberger, C.A. & Muller, D.J. High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr. Opin. Struct. Biol. 7, 279–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  155. Heymann, J.B., Moeller, C. & Muller, D.J. Sampling effects influence heights measured with atomic force microscopy. J. Microsc. 207, 43–51 (2001).

    Article  Google Scholar 

  156. Schwarz, U.D., Haefke, H., Reimann, P. & Guntherodt, H.J. Tip artefacts in scanning force microscopy. J. Microsc. 173, 183–197 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Alsteens and I. Medalsy for stimulating discussions and advice. This work was supported by the Swiss National Science Foundation, the European Union Marie Curie Actions program through the ACRITAS Initial Training Network (FP7-PEOPLE-2012-ITN, Project 317348), and the European Molecular Biology Organization long-term fellowship 506-2012.

Author information

Authors and Affiliations

Authors

Contributions

M.P., D.M.-M., S.W. and D.J.M. designed the AFM protocol. M.P., E.M. and S.W. performed and optimized the experimental procedure. M.P., D.M.-M., S.W. and D.J.M. wrote the manuscript.

Corresponding author

Correspondence to Daniel J Muller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfreundschuh, M., Martinez-Martin, D., Mulvihill, E. et al. Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM. Nat Protoc 9, 1113–1130 (2014). https://doi.org/10.1038/nprot.2014.070

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.070

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing