Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons

Abstract

The pig has emerged as an important large animal model in biomedical and pharmaceutical research. We describe a protocol for high-efficiency germline transgenesis and sustained transgene expression in pigs by using the Sleeping Beauty (SB) transposon system. The protocol is based on co-injection of a plasmid encoding the SB100X hyperactive transposase, together with a second plasmid carrying a transgene flanked by binding sites for the transposase, into the cytoplasm of porcine zygotes. The transposase mediates excision of the transgene cassette from the plasmid vector and its permanent insertion into the genome to produce stable transgenic animals. This method compares favorably in terms of both efficiency and reliable transgene expression to classic pronuclear microinjection or somatic cell nuclear transfer (SCNT), and it offers comparable efficacies to lentiviral approaches, without limitations on vector design, issues of transgene silencing and the toxicity and biosafety concerns of working with viral vectors. Microinjection of the vectors into zygotes and transfer of the embryos to recipient animals can be performed in 1 d; generation of germline-transgenic lines by using this protocol takes 1 year.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Application of Sleeping Beauty transposons for gene delivery.
Figure 2: Injection of circular transposon plasmids into the cytoplasm of porcine zygotes.
Figure 3: Timeline flowchart for animal treatment and cytoplasmic injection.
Figure 4: Isolation of porcine zygotes from the oviduct.
Figure 5: Loading of transfer straw with embryos and embryo transfer.
Figure 6: Embryo transfer of microinjected zygotes to synchronized surrogates.
Figure 7: Live imaging of piglets transgenic for a Venus-tagged SB transposon.

Similar content being viewed by others

References

  1. Kuzmuk, K.N. & Schook, L.B. Pigs as a model for biomedical sciences. in The Genetics of the Pig, Vol. 2 (eds. Rothschild, M.F. & Ruvinsky, A.) 426–444 (CAB International, 2011).

  2. Kues, W.A. & Niemann, H. Advances in farm animal transgenesis. Prev. Vet. Med. 102, 146–156 (2011).

    Article  Google Scholar 

  3. Whyte, J.J. & Prather, R.S. Genetic modifications of pigs for medicine and agriculture. Mol. Reprod. Dev. 78, 879–891 (2011).

    Article  CAS  Google Scholar 

  4. Cibelli, J. et al. Strategies for improving animal models for regenerative medicine. Cell Stem Cell 12, 271–274 (2013).

    Article  CAS  Google Scholar 

  5. Garrels, W., Ivics, Z. & Kues, W.A. Precision genetic engineering in large mammals. Trends Biotechnol. 30, 386–393 (2012).

    Article  CAS  Google Scholar 

  6. Petters, R.M. et al. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat. Biotechnol. 15, 965–970 (1997).

    Article  CAS  Google Scholar 

  7. Rogers, C.S. et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321, 1837–1841 (2008).

    Article  CAS  Google Scholar 

  8. Kragh, P.M. et al. Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer's disease-causing dominant mutation APPsw. Transgenic Res. 18, 545–558 (2009).

    Article  CAS  Google Scholar 

  9. Yang, D. et al. Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum. Mol. Genet. 19, 3983–3994 (2010).

    Article  CAS  Google Scholar 

  10. Flisikowska, T. et al. A porcine model of familial adenomatous polyposis. Gastroenterology 143, 1173–1175 e1-7 (2012).

    Article  CAS  Google Scholar 

  11. Suzuki, S. et al. Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753–758 (2012).

    Article  CAS  Google Scholar 

  12. Yeom, H.J. et al. Generation and characterization of human heme oxygenase-1 transgenic pigs. PLoS ONE 7, e46646 (2012).

    Article  CAS  Google Scholar 

  13. Hofmann, A. et al. Epigenetic regulation of lentiviral transgene vectors in a large animal model. Mol. Ther. 13, 59–66 (2006).

    Article  CAS  Google Scholar 

  14. Kues, W.A. et al. Epigenetic silencing and tissue independent expression of a novel tetracycline inducible system in double-transgenic pigs. FASEB J. 20, 1200–1202 (2006).

    Article  CAS  Google Scholar 

  15. Hall, V.J. Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines. Reprod. Fertil. Dev. 25, 94–102 (2012).

    Article  Google Scholar 

  16. Esteban, M.A. et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 284, 17634–17640 (2009).

    Article  CAS  Google Scholar 

  17. Ezashi, T. et al. Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl. Acad. Sci. USA 106, 10993–10998 (2009).

    Article  CAS  Google Scholar 

  18. Wu, Z. et al. Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell Biol. 1, 46–54 (2009).

    Article  CAS  Google Scholar 

  19. Kues, W.A. et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev. 22, 124–135 (2013).

    Article  CAS  Google Scholar 

  20. Montserrat, N. et al. Generation of pig iPS cells: a model for cell therapy. J. Cardiovasc. Transl. Res. 4, 121–130 (2011).

    Article  Google Scholar 

  21. West, F.D. et al. Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells 29, 1640–1643 (2011).

    Article  CAS  Google Scholar 

  22. Fujishiro, S.H. et al. Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev. 22, 473–482 (2013).

    Article  CAS  Google Scholar 

  23. Fan, N. et al. Piglets cloned from induced pluripotent stem cells. Cell Res. 23, 162–166 (2013).

    Article  CAS  Google Scholar 

  24. Hofmann, A. et al. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep. 4, 1054–1060 (2003).

    Article  CAS  Google Scholar 

  25. Whitelaw, C.B. et al. Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Lett. 571, 233–236 (2004).

    Article  CAS  Google Scholar 

  26. Kurome, M. et al. Effects of sperm pretreatment on efficiency of ICSI-mediated gene transfer in pigs. J. Reprod. Dev. 53, 1217–1226 (2007).

    Article  CAS  Google Scholar 

  27. Watanabe, M. et al. The creation of transgenic pigs expressing human proteins using BAC-derived, full-length genes and intracytoplasmic sperm injection-mediated gene transfer. Transgenic Res. 21, 605–618 (2012).

    Article  CAS  Google Scholar 

  28. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvák, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    Article  CAS  Google Scholar 

  29. Ivics, Z. et al. Transposon-mediated genome manipulation in vertebrates. Nat. Methods 6, 415–422 (2009).

    Article  CAS  Google Scholar 

  30. Zayed, H., Izsvák, Z., Walisko, O. & Ivics, Z. Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Mol. Ther. 9, 292–304 (2004).

    Article  CAS  Google Scholar 

  31. Rostovskaya, M. et al. Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Res. 40, e150 (2012).

    Article  CAS  Google Scholar 

  32. Voigt, K. et al. Retargeting Sleeping Beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol. Ther. 20, 1852–1862 (2012).

    Article  CAS  Google Scholar 

  33. Moldt, B. et al. Comparative genomic integration profiling of Sleeping Beauty transposons mobilized with high efficacy from integrase-defective lentiviral vectors in primary human cells. Mol. Ther. 19, 1499–1510 (2011).

    Article  CAS  Google Scholar 

  34. Grabundzija, I. et al. Comparative analysis of transposable element vector systems in human cells. Mol. Ther. 18, 1200–1209 (2010).

    Article  CAS  Google Scholar 

  35. Ammar, I. et al. Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Res. 40, 6693–6712 (2012).

    Article  CAS  Google Scholar 

  36. Ivics, Z. & Izsvák, Z. The expanding universe of transposon technologies for gene and cell engineering. Mob. DNA 1, 25 (2010).

    Article  CAS  Google Scholar 

  37. Ammar, I., Izsvák, Z. & Ivics, Z. The Sleeping Beauty transposon toolbox. Methods Mol. Biol. 859, 229–240 (2012).

    Article  CAS  Google Scholar 

  38. Mates, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

    Article  CAS  Google Scholar 

  39. Katter, K. et al. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. FASEB J. 27, 930–941 (2013).

    Article  CAS  Google Scholar 

  40. Ivics, Z. et al. Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nat. Protoc. 9, 773–793 (2014).

    Article  CAS  Google Scholar 

  41. Ivics, Z. et al. Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nat. Protoc. 9, 794–809 (2014).

    Article  CAS  Google Scholar 

  42. Garrels, W. et al. Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS ONE 6, e23573 (2011).

    Article  CAS  Google Scholar 

  43. Ellis, J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum. Gene Ther. 16, 1241–1246 (2005).

    Article  CAS  Google Scholar 

  44. Jahner, D. et al. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298, 623–628 (1982).

    Article  CAS  Google Scholar 

  45. Wolf, D. & Goff, S.P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458, 1201–1204 (2009).

    Article  CAS  Google Scholar 

  46. Park, F. Lentiviral vectors: are they the future of animal transgenesis? Physiol. Genomics 31, 159–173 (2007).

    Article  CAS  Google Scholar 

  47. Turan, S. & Bode, J. Site-specific recombinases: from tag-and-target- to tag-and-exchange-based genomic modifications. FASEB J. 25, 4088–4107 (2011).

    Article  CAS  Google Scholar 

  48. Garrels, W. et al. Genotype-independent transmission of transgenic fluorophore protein by boar spermatozoa. PLoS ONE 6, e27563 (2011).

    Article  CAS  Google Scholar 

  49. Claeys Bouuaert, C., Lipkow, K., Andrews, S.S., Liu, D. & Chalmers, R. The autoregulation of a eukaryotic DNA transposon. Elife 2, e00668 (2013).

    Article  Google Scholar 

  50. Jakobsen, J.E. et al. Pig transgenesis by Sleeping Beauty DNA transposition. Transgenic Res. 20, 533–545 (2011).

    Article  CAS  Google Scholar 

  51. Carlson, D.F. et al. Strategies for selection marker-free swine transgenesis using the Sleeping Beauty transposon system. Transgenic Res. 20, 1125–1137 (2011).

    Article  CAS  Google Scholar 

  52. Al-Mashhadi, R.H. et al. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci. Transl. Med. 5, 166ra1 (2013).

    Article  Google Scholar 

  53. Wu, Z. et al. Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res. 22, 1107–1118 (2013).

    Article  CAS  Google Scholar 

  54. Iqbal, K. et al. Cytoplasmic injection of circular plasmids allows targeted expression in mammalian embryos. Biotechniques 47, 959–968 (2009).

    Article  Google Scholar 

  55. Iqbal, K. et al. Species-specific telomere length differences between blastocyst cell compartments and ectopic telomere extension in early bovine embryos by human telomerase reverse transcriptase. Biol. Reprod. 84, 723–733 (2011).

    Article  CAS  Google Scholar 

  56. O'Malley, R.C., Alonso, J.M., Kim, C.J., Leisse, T.J. & Ecker, J.R. An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat. Protoc. 2, 2910–2917 (2007).

    Article  CAS  Google Scholar 

  57. Ivics, Z., Izsvák, Z., Medrano, G., Chapman, K.M. & Hamra, F.K. Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells. Nat. Protoc. 6, 1521–1535 (2011).

    Article  CAS  Google Scholar 

  58. Hyttel, P., Sinowatz, F., Vejlsted, M. & Betteridge,, K. Essentials of Domestic Animal Embryology (Saunders Elsevier, 2010).

  59. Garrels, W., Cleve, N., Niemann, H. & Kues, W.A. Rapid non-invasive genotyping of reporter transgenic mammals. Biotechniques 10.2144/000113874 (2012).

Download references

Acknowledgements

This work was financially supported by grants of the Deutsche Forschungsgemeinschaft to W.A.K. and Z. Ivics (KU 1586/2-1 and IV 21/6-1). The expert support and critical input by J.W. Carnwath, S. Holler, B. Barg-Kues, N. Cleve, M. Ziegler and M. Diederich are also gratefully acknowledged. Whole-animal images under fluorescence excitation were done by the Friedrich Loeffler Institute's photographer D.B., and the video was recorded by P. Köhler.

Author information

Authors and Affiliations

Authors

Contributions

W.A.K., T.R., M.P., A.G., Z. Ivics and Z. Izsvák designed the study; W.G., L.M., T.Y.Y., S.B., V.Z., V.L., A.G., Z. Ivics and W.A.K. performed the experiments; W.A.K., Z. Ivics and W.G. evaluated the data; and W.A.K., Z. Ivics, T.R., W.G. and Z. Izsvák wrote the manuscript.

Corresponding authors

Correspondence to Zoltán Ivics, Wilfried A Kues or Zsuzsanna Izsvák.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Identification of genomic transgene integration by PCR.

(a) Identification of integrated transposon sequences from mouse genomic DNA samples by PCR with primers that amplify the left ITR of SB. Lanes: 1) H2O; 2) mouse genomic DNA, negative control; 3) mouse genomic DNA, positive control; 4) transgenic founder #1; 5-9) F1 offspring of transgenic founder #1; 10) transgenic founder #2; 11-13) F1 offspring of transgenic founder #2; M) 100-bp molecular size marker. (b) Ouline of the LMPCR procedure. Digestion of genomic DNA with the frequently cutting restriction enzymes BfaI and DpnII and ligation of linkers with a known sequence allows for specific LMPCR amplification of transposon/genomic DNA junctions using primers specific to the transposon ITR (blue arrows) and the linkers (green arrows). GOI, gene of interest; ITR, inverted terminal repeat. (c) Agarose gel with genomic DNA samples. Lanes 1-4) genomic DNA samples of rat founders, 500 ng each; M) DNA size marker. (d) Agarose gel with genomic DNA samples digested with BfaI restriction endonuclease. Lanes 1-4) BfaI-digested DNA samples of rat founders, 200 ng each; M) DNA size marker. (e) Agarose gel with LMPCR products. Lanes 1-4) result of nested PCR following BfaI linker ligation; M) DNA size marker.

Supplementary Figure 2 Locus-specific PCR test of a rat founder and its F1 descendants.

The founder of these F1 animals carried three SB integrations (in chr2, chr4 and chr16), which were transmitted to 13 descendants in different combinations. M, DNA size marker.

Supplementary information

Supplementary Figure 1

Identification of genomic transgene integration by PCR. (PDF 488 kb)

Supplementary Figure 2

Locus-specific PCR test of a rat founder and its F1 descendants. (PDF 361 kb)

Copy number-dependent fluorescence in F2-generation piglets.

The F2 litter of piglets are derived from the crossbreeding of two lines. Each founder carried three monomeric Venus-transposons, which segregated individually during meiosis. The piglets shown carry 0 to 5 copies of the Venus-transposon, and the fluorescent intensity correlates directly with the genotype. The “bluish” piglet in the back is a non-transgenic littermate. (MPG 1838 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivics, Z., Garrels, W., Mátés, L. et al. Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat Protoc 9, 810–827 (2014). https://doi.org/10.1038/nprot.2014.010

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.010

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing