Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications

Abstract

Naturally occurring fluorescent proteins (FPs) cloned from marine organisms often suffer from many drawbacks for cell biology applications, including poor folding efficiency at 37 °C, slow chromophore formation and obligatory quaternary structure. Many of these drawbacks can be minimized or eliminated by using protein engineering and directed evolution, resulting in superior probes for use in live-cell fluorescence microscopy. In this protocol, we provide methods for engineering a monomeric FP, for enhancing its brightness by directed evolution, and for thoroughly characterizing the optimized variant. Variations on this procedure can be used to select for many other desirable features, such as a red-shifted emission spectrum or enhanced photostability. Although the length of the procedure is dependent on the degree of optimization desired, the basic steps can be accomplished in 4–6 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps used to engineer a new FP.
Figure 2: Conversion of a naturally tetrameric FP to an engineered monomeric FP.
Figure 3: Typical photobleaching kinetics of FPs.
Figure 4
Figure 5: Mounting procedure for photobleaching proteins.
Figure 6: Comparison of good and poor localization of FP fusions in similar constructs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G. & Cormier, M.J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).

    Article  CAS  Google Scholar 

  2. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  3. Inouye, S. & Tsuji, F.I. Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett. 341, 277–280 (1994).

    Article  CAS  Google Scholar 

  4. Matz, M.V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973 (1999).

    Article  CAS  Google Scholar 

  5. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  6. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  7. Ai, H., Henderson, J.N., Remington, S.J. & Campbell, R.E. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem. J. 400, 531–540 (2006).

    Article  CAS  Google Scholar 

  8. Hoi, H. et al. An engineered monomeric Zoanthus sp. Yellow fluorescent protein. Chem. Biol. 20, 1296–1304 (2013).

    Article  CAS  Google Scholar 

  9. Baird, G.S., Zacharias, D.A. & Tsien, R.Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11984–11989 (2000).

    Article  CAS  Google Scholar 

  10. Lauf, U., Lopez, P. & Falk, M.M. Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Lett. 498, 11–15 (2001).

    Article  CAS  Google Scholar 

  11. Gavin, P., Devenish, R.J. & Prescott, M. An approach for reducing unwanted oligomerisation of DsRed fusion proteins. Biochem. Biophys. Res. Commun. 298, 707–713 (2002).

    Article  CAS  Google Scholar 

  12. Soling, A., Simm, A. & Rainov, N. Intracellular localization of herpes simplex virus type 1 thymidine kinase fused to different fluorescent proteins depends on choice of fluorescent tag. FEBS Lett. 527, 153–158 (2002).

    Article  CAS  Google Scholar 

  13. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  Google Scholar 

  14. Karasawa, S., Araki, T., Yamamoto-Hino, M. & Miyawaki, A. A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J. Biol. Chem. 278, 34167–34171 (2003).

    Article  CAS  Google Scholar 

  15. Shaner, N.C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    Article  CAS  Google Scholar 

  16. Karasawa, S., Araki, T., Nagai, T., Mizuno, H. & Miyawaki, A. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem. J. 381, 307–312 (2004).

    Article  CAS  Google Scholar 

  17. Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA 101, 15905–15910 (2004).

    Article  CAS  Google Scholar 

  18. Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).

    Article  CAS  Google Scholar 

  19. Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).

    Article  CAS  Google Scholar 

  20. Kogure, T. et al. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 24, 577–581 (2006).

    Article  CAS  Google Scholar 

  21. Shagin, D.A. et al. GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol. Biol. Evol. 21, 841–850 (2004).

    Article  CAS  Google Scholar 

  22. Alieva, N.O. et al. Diversity and evolution of coral fluorescent proteins. PLoS ONE 3, e2680 (2008).

    Article  Google Scholar 

  23. Pavoor, T.V., Cho, Y.K. & Shusta, E.V. Development of GFP-based biosensors possessing the binding properties of antibodies. Proc. Natl. Acad. Sci. USA 106, 11895–11900 (2009).

    Article  Google Scholar 

  24. Wang, L., Jackson, W.C., Steinbach, P.A. & Tsien, R.Y. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA 101, 16745–16749 (2004).

    Article  CAS  Google Scholar 

  25. Arakawa, H. et al. Protein evolution by hypermutation and selection in the B cell line DT40. Nucleic Acids Res. 36, e1 (2008).

    Article  Google Scholar 

  26. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  27. Nguyen, A.W. & Daugherty, P.S. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat. Biotechnol. 23, 355–360 (2005).

    Article  CAS  Google Scholar 

  28. Mena, M.A., Treynor, T.P., Mayo, S.L. & Daugherty, P.S. Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat. Biotechnol. 24, 1569–1571 (2006).

    Article  CAS  Google Scholar 

  29. Dai, M. et al. The creation of a novel fluorescent protein by guided consensus engineering. Protein Eng. Des. Sel. 20, 69–79 (2007).

    Article  CAS  Google Scholar 

  30. Hoi, H. et al. A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. J. Mol. Biol. 401, 776–791 (2010).

    Article  CAS  Google Scholar 

  31. Treynor, T.P., Vizcarra, C.L., Nedelcu, D. & Mayo, S.L. Computationally designed libraries of fluorescent proteins evaluated by preservation and diversity of function. Proc. Natl. Acad. Sci. USA 104, 48–53 (2007).

    Article  CAS  Google Scholar 

  32. Chica, R.A., Moore, M.M., Allen, B.D. & Mayo, S.L. Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries. Proc. Natl. Acad. Sci. USA 107, 20257–20262 (2010).

    Article  CAS  Google Scholar 

  33. Stemmer, W.P., Crameri, A., Ha, K.D., Brennan, T.M. & Heyneker, H.L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).

    Article  CAS  Google Scholar 

  34. Bessette, P.H., Mena, M.A., Nguyen, A.W. & Daugherty, P.S. Construction of designed protein libraries using gene assembly mutagenesis. In Directed Evolution Library Creation: Methods and Protocols 1st edn., Vol. 231 (eds. Arnold, F.H. & Georgiou, G.) 29–37 (Humana Press, 2003).

  35. Yang, T.T., Cheng, L. & Kain, S.R. Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 24, 4592–4593 (1996).

    Article  CAS  Google Scholar 

  36. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  37. Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V. & Remington, S.J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. Proc. Natl. Acad. Sci. USA 98, 462–467 (2001).

    Article  CAS  Google Scholar 

  38. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  CAS  Google Scholar 

  39. Fromant, M., Blanquet, S. & Plateau, P. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal. Biochem. 224, 347–353 (1995).

    Article  CAS  Google Scholar 

  40. Cirino, P.C., Mayer, K.M. & Umeno, D. Generating mutant libraries using error-prone PCR. In Directed Evolution Library Creation: Methods and Protocols 1st edn., Vol. 231 (eds. Arnold, F.H. & Georgiou, G.) 3–9 (Humana Press, 2003).

  41. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  42. Heckman, K.L. & Pease, L.R. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat. Protoc. 2, 924–932 (2007).

    Article  CAS  Google Scholar 

  43. Georgescu, R., Bandara, G. & Sun, L. Saturation mutagenesis. In Directed Evolution Library Creation: Methods and Protocols 1st edn., Vol. 231 (eds. Arnold, F.H. & Georgiou, G.) 75–83 (Humana Press, 2003).

  44. Aguinaldo, A.M. & Arnold, F.H. Staggered extension process (StEP) in vitro recombination. In Directed Evolution Library Creation: Methods and Protocols 1st edn., Vol. 231 (eds. Arnold, F.H. & Georgiou, G.) 105–110 (Humana Press, 2003).

  45. Zhao, H. & Zha, W. In vitro 'sexual' evolution through the PCR-based staggered extension process (StEP). Nat. Protoc. 1, 1865–1871 (2006).

    Article  CAS  Google Scholar 

  46. Trudeau, D.L., Smith, M.A. & Arnold, F.H. Innovation by homologous recombination. Curr. Opin. Chem. Biol. 17 (2013), 902–909.

    Article  CAS  Google Scholar 

  47. Lindenburg, L.H., Hessels, A.M., Ebberink, E.H., Arts, R. & Merkx, M. Robust red FRET sensors using self-associating fluorescent domains. ACS Chem. Biol. 8, 2133–2139 (2013).

    Article  CAS  Google Scholar 

  48. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  49. Crameri, A., Whitehorn, E.A., Tate, E. & Stemmer, W.P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319 (1996).

    Article  CAS  Google Scholar 

  50. Berman, H.M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  51. Strack, R.L. et al. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48, 8279–8281 (2009).

    Article  CAS  Google Scholar 

  52. Adams, M.J., Highfield, J.G. & Kirkbright, G.F. Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous-medium by optoacoustic spectrometry. Anal. Chem. 49, 1850–1852 (1977).

    Article  CAS  Google Scholar 

  53. Brannon, J.H. & Magde, D. Absolute quantum yield determination by thermal blooming. Fluorescein. J. Phys. Chem. 82, 705–709 (1978).

    Article  CAS  Google Scholar 

  54. Karstens, T. & Kobs, K. Rhodamine-B and rhodamine-101 as reference substances for fluorescence quantum yield measurements. J. Phys. Chem. 84, 1871–1872 (1980).

    Article  CAS  Google Scholar 

  55. Ward, W.W. Biochemical and physical properties of green fluorescent protein. In Green Fluorescent Protein: Properties, Applications, and Protocols 2nd edn., Vol. 47 (eds. Chalfie, M. & Kain, S.R.) 39–65 (John Wiley & Sons, 2006).

  56. Ai, H., Olenych, S.G., Wong, P., Davidson, M.W. & Campbell, R.E. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol. 6, 13 (2008).

    Article  Google Scholar 

  57. Shu, X., Shaner, N.C., Yarbrough, C.A., Tsien, R.Y. & Remington, S.J. Novel chromophores and buried charges control color in mFruits. Biochemistry 45, 9639–9647 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was made possible with financial support from the University of Alberta, the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, and Alberta Ingenuity (scholarship to Y.S. and a New Faculty Award to R.E.C.). R.E.C. holds a Canada Research Chair in Bioanalytical Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

M.W.D. and M.A.B. acquired data and images shown in Figures 3 and 6. H.A., M.A.B., Y.S., M.W.D. and R.E.C. developed the protocols and wrote and edited the paper.

Corresponding authors

Correspondence to Michael W Davidson or Robert E Campbell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, Hw., Baird, M., Shen, Y. et al. Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications. Nat Protoc 9, 910–928 (2014). https://doi.org/10.1038/nprot.2014.054

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.054

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing