Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A general protocol for the generation of Nanobodies for structural biology

Abstract

There is growing interest in using antibodies as auxiliary tools to crystallize proteins. Here we describe a general protocol for the generation of Nanobodies to be used as crystallization chaperones for the structural investigation of diverse conformational states of flexible (membrane) proteins and complexes thereof. Our technology has a competitive advantage over other recombinant crystallization chaperones in that we fully exploit the natural humoral response against native antigens. Accordingly, we provide detailed protocols for the immunization with native proteins and for the selection by phage display of in vivo–matured Nanobodies that bind conformational epitopes of functional proteins. Three representative examples illustrate that the outlined procedures are robust, making it possible to solve by Nanobody-assisted X-ray crystallography in a time span of 6–12 months.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow for the generation of conformational Nanobodies for structural biology.
Figure 2: Native gel analysis of Nanobodies interacting with the oligonucleotide-binding fold of the A1 protein of the editosome of the sleeping sickness parasite Trypanosoma brucei24.
Figure 3: Nb80 is a structural mimic of GαS and stabilizes the active-state conformation of β2AR.
Figure 4: Structure of the β2AR-Gs complex solved by Nanobody-enabled X-ray crystallography.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Rasmussen, S.G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rasmussen, S.G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Low, C. et al. Nanobody mediated crystallization of an archeal mechanosensitive channel. PLoS ONE 8, e77984 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Baranova, E. et al. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 487, 119–122 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Park, Y.J., Pardon, E., Wu, M., Steyaert, J. & Hol, W.G. Crystal structure of a heterodimer of editosome interaction proteins in complex with two copies of a cross-reacting nanobody. Nucleic Acids Res. 40, 1828–1840 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Korotkov, K.V. et al. Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. PLoS Pathog. 7, e1002228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Loris, R. et al. Crystal structure of the intrinsically flexible addiction antidote MazE. J. Biol. Chem. 278, 28252–28257 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Abskharon, R.N. et al. Combining in situ proteolysis and microseed matrix screening to promote crystallization of PrPc-nanobody complexes. Protein Eng. Des. Sel. 24, 737–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Domanska, K. et al. Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic β2-microglobulin variant. Proc. Natl. Acad. Sci. USA 108, 1314–1319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guilliams, T. et al. Nanobodies raised against monomeric α-synuclein distinguish between fibrils at different maturation stages. J. Mol. Biol. 425, 2397–2411 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Muyldermans, S., Cambillau, C. & Wyns, L. Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem. Sci. 26, 230–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Lauwereys, M. et al. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 17, 3512–3520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Genst, E. et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc. Natl. Acad. Sci. USA 103, 4586–4591 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Newby, Z.E. et al. A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat. Protoc. 4, 619–637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koch-Nolte, F. et al. Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J. 21, 3490–3498 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Laeremans, T. et al. Genetic immunization for producing immunoglobulins against cell-associated antigens such as P2X7, CXCR7 or CXCR4. WO patent 2,010,070,145 (2010).

  18. Roovers, R.C. et al. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies. Cancer Immunol. Immunother. 56, 303–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Desmyter, A. et al. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat. Struct. Biol. 3, 803–811 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Decanniere, K. et al. A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Structure 7, 361–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Desmyter, A. et al. Three camelid VHH domains in complex with porcine pancreatic α-amylase. Inhibition and versatility of binding topology. J. Biol. Chem. 277, 23645–23650 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Dumoulin, M. et al. A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature 424, 783–788 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Korotkov, K.V., Pardon, E., Steyaert, J. & Hol, W.G. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17, 255–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, Y.J. et al. The structure of the C-terminal domain of the largest editosome interaction protein and its role in promoting RNA binding by RNA-editing ligase L2. Nucleic Acids Res. 40, 6966–6977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vanderhaegen, S. et al. Structure of an early native-like intermediate of β2-microglobulin amyloidogenesis. Protein Sci. 22, 1349–1357 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ward, A.B. et al. Structures of P-glycoprotein reveal its conformational flexibility and an epitope on the nucleotide-binding domain. Proc. Natl. Acad. Sci. USA 110, 13386–13391 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Banner, D.W. et al. Mapping the conformational space accessible to BACE2 using surface mutants and cocrystals with Fab fragments, Fynomers and Xaperones. Acta Crystallogr. D Biol. Crystallogr. 69, 1124–1137 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Tereshko, V. et al. Toward chaperone-assisted crystallography: protein engineering enhancement of crystal packing and X-ray phasing capabilities of a camelid single-domain antibody (VHH) scaffold. Protein Sci. 17, 1175–1187 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spinelli, S. et al. Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses. Nat. Struct. Mol. Biol. 13, 85–89 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, M. et al. Structures of a key interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies. J. Struct. Biol. 174, 124–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Koide, S. Engineering of recombinant crystallization chaperones. Curr. Opin. Struct. Biol. 19, 449–457 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bukowska, M.A. & Grutter, M.G. New concepts and aids to facilitate crystallization. Curr. Opin. Struct. Biol. 23, 409–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Steyaert, J. & Kobilka, B.K. Nanobody stabilization of G protein-coupled receptor conformational states. Curr. Opin. Struct. Biol. 21, 567–572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Westfield, G.H. et al. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. Proc. Natl. Acad. Sci. USA 108, 16086–16091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rivera-Calzada, A. et al. Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J. 32, 1195–1204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vercruysse, T. et al. Measuring cooperative Rev protein-protein interactions on Rev responsive RNA by fluorescence resonance energy transfer. RNA Biol. 8, 316–324 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Vercruysse, T., Pardon, E., Vanstreels, E., Steyaert, J. & Daelemans, D. An intrabody based on a llama single-domain antibody targeting the N-terminal α-helical multimerization domain of HIV-1 rev prevents viral production. J. Biol. Chem. 285, 21768–21780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lawson, A.D. Antibody-enabled small-molecule drug discovery. Nat. Rev. Drug Discov. 11, 519–525 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Structural Genomics Consortium. et al. Protein production and purification. Nat. Methods 5, 135–146 (2008).

  42. Vedadi, M., Arrowsmith, C.H., Allali-Hassani, A., Senisterra, G. & Wasney, G.A. Biophysical characterization of recombinant proteins: a key to higher structural genomics success. J. Struct. Biol. 172, 107–119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jahnichen, S. et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc. Natl. Acad. Sci. USA 107, 20565–20570 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paalanen, M.M. et al. The development of activating and inhibiting camelid VHH domains against human protein kinase Cɛ. Eur. J. Pharm. Sci. 42, 332–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, G.M. & Craik, C.S. Trapping moving targets with small molecules. Science 324, 213–215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flajnik, M.F., Deschacht, N. & Muyldermans, S. A case of convergence: why did a simple alternative to canonical antibodies arise in sharks and camels? PLoS Biol. 9, e1001120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. De Genst, E., Saerens, D., Muyldermans, S. & Conrath, K. Antibody repertoire development in camelids. Dev. Comp. Immunol. 30, 187–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Conrath, K.E. et al. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob. Agents Chemother. 45, 2807–2812 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van der Linden, R. et al. Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J. Immunol. Methods 240, 185–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Maass, D.R., Sepulveda, J., Pernthaner, A. & Shoemaker, C.B. Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J. Immunol. Methods 324, 13–25 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kastelic, D. et al. A single-step procedure of recombinant library construction for the selection of efficiently produced llama VH binders directed against cancer markers. J. Immunol. Methods 350, 54–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Hoogenboom, H.R. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23, 1105–1116 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Koide, A. & Koide, S. Affinity maturation of single-domain antibodies by yeast surface display. in Single-Domain Antibodies 431–443 (Springer, 2012).

  54. Ryckaert, S., Pardon, E., Steyaert, J. & Callewaert, N. Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of Pichia pastoris. J. Biotechnol. 145, 93–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Fleetwood, F. et al. Surface display of a single-domain antibody library on Gram-positive bacteria. Cell Mol. Life Sci. 70, 1081–1093 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Nizak, C., Moutel, S., Goud, B. & Perez, F. Selection and application of recombinant antibodies as sensors of Rab protein conformation. Methods Enzymol. 403, 135–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Verheesen, P. & Laeremans, T. Selection by phage display of single-domain antibodies specific to antigens in their native conformation. in Single-Domain Antibodies 81–104 (Springer, 2012).

  58. Muyldermans, S. Single-domain camel antibodies: current status. J. Biotechnol. 74, 277–302 (2001).

    CAS  PubMed  Google Scholar 

  59. Zell, R. & Fritz, H.J. DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues. EMBO J. 6, 1809–1815 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R. & Muyldermans, S. Selection and identification of single-domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414, 521–526 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. De Genst, E.J. et al. Structure and properties of a complex of α-synuclein and a single-domain camelid antibody. J. Mol. Biol. 402, 326–343 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Deng, J. et al. An improved protocol for rapid freezing of protein samples for long-term storage. Acta Crystallogr. D Biol. Crystallogr. 60, 203–204 (2004).

    Article  PubMed  CAS  Google Scholar 

  63. Hamers-Casterman, C. et al. Naturally occurring antibodies devoid of light chains. Nature 363, 446–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Daley, L.P., Gagliardo, L.F., Duffy, M.S., Smith, M.C. & Appleton, J.A. Application of monoclonal antibodies in functional and comparative investigations of heavy-chain immunoglobulins in new world camelids. Clin. Diagn. Lab. Immunol. 12, 380–386 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chomczynski, P. & Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Esterhazy, D. et al. Bace2 is a beta cell–enriched protease that regulates pancreatic beta cell function and mass. Cell Metab. 14, 365–377 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Kobilka, B.K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein–coupled receptor. Anal. Biochem. 231, 269–271 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Chae, P.S. et al. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat. Methods 7, 1003–1008 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Whorton, M.R. et al. A monomeric G protein–coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl. Acad. Sci. USA 104, 7682–7687 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lam, A.Y., Pardon, E., Korotkov, K.V., Hol, W.G. & Steyaert, J. Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus. J. Struct. Biol. 166, 8–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Gonzalez Pajuelo, M., Hermans, G. & Vanlandschoot, P. Panning phage libraries with lipoprotein particles expressing the target antigen. WO patent 2,011,083,141 (2011).

  72. Bich, C. et al. Reactivity and applications of new amine reactive cross-linkers for mass spectrometric detection of protein-protein complexes. Anal. Chem. 82, 172–179 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members and associates of the Steyaert, Muyldermans, Hol and Kobilka laboratories, past and present, for their assorted contributions over the years to this work. In particular, we acknowledge the contributions of N. Buys and Y.J. Park. The Steyaert laboratory was supported by the Fonds Wetenschappelijk Onderzoek-Vlaanderen through research grants G011110N and G049512N, Innoviris Brussels through the Impulse Life Science program BRGEOZ132, the Belgian Federal Science Policy Office through IAP7-40 and by the SBO program IWT120026 from the Flemish Agency for Innovation by Science and Technology. B.K.K. received support from US National Institutes of Health (NIH) grants R01NS028471 and R01GM083118 and from the Mathers Foundation. The research in the laboratory of W.G.J.H. was supported by the National Institute of Allergy and Infectious Diseases (NIAID) and the National Institute of General Medical Sciences (NIGMS) of the NIH under award numbers AI34501 and GM077418. S.T. received a doctoral fellowship from the Fonds Wetenschappelijk Onderzoek-Vlaanderen. S.G.F.R is supported by the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.S. developed the concept of Nanobody-assisted crystallography in collaboration with W.G.J.H. and B.K.K.; E.P., T.L., S.T., A.W. and J.S. worked out the protocol. E.P., T.L., S.M., W.G.J.H., B.K.K. and J.S. contributed to the Introduction. E.P., T.L., S.G.F.R., A.R., B.K.K. and J.S. performed the experiments described in the Anticipated Results and all authors participated in discussions on technical and conceptual aspects of the protocol and the editing of the manuscript.

Corresponding author

Correspondence to Jan Steyaert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Strategies to amplify the Nanobody repertoire by PCR from PBL cDNA.

For each primer, we specify the locus of hybridization on the cDNAs encoding the heavy chains of the conventional antibodies (isotype IgG1), on the cDNAs encoding the heavy chain only antibodies of isotype IgG3 or on the cDNAs encoding the heavy chain only antibodies of isotype IgG2. Arrows representing the primers are not drawn to scale. H: hinge; CH2: constant domain 2; CH3: constant domain 3; Fr1 (to 4): framework 1 (to 4); CDR1 (to 3): complementarity determining region 1 (to 3); VH: variable domain of the heavy chain of a conventional antibody (IgG1); VHH: variable domain of a heavy chain only antibody (IgG2 or IgG3). Immunoglobulin domains with highly conserved DNA sequences amongst camelid species (leader, CH2, CH3) are pattern filled. (A) Primers CALL001 and CAL002 to amplify the variable domains of all camelid immunoglobulin heavy chains from PBL cDNA (Step 21) are depicted in black. The primers VHH-Back and VHH-For to amplify the Nanobody repertoire via nested PCR (Step 24) are depicted with open arrows. (B) Van der linden et al. developed dedicated primers to separately amplify the IgG2 and IgG3 isotypes from llama glama49 (C) Maass et al. developed primers to separately amplify the IgG2 and IgG3 isotypes from llama pacos 50(D) Kastelic et al. developed a set of primers that amplify all VHs and VHHs from llama51.

Supplementary Figure 2 Map and sequence information for phage display vector pMES4.

A. Map of phage display vector pMES4 (4501bp, Genbank GQ907248). Nanobodies can be cloned as PstI-Eco91I fragments (Step 26) in between the pelB sequence (pelB) coding for the secretion signal peptide of PelB and a 6xHis-tag (His-tag) followed by the hemagglutinin tag (HA-tag) and gene III of filamentous phage fd (fd geneIII). Other annotations are the lac promotor/operator (Plac/operator), the gene conferring ampicillin resistance (AmpR), the bacterial origin of replication (rep) and the f1 origin of replication (f1ori). The annealing sites for the forward sequencing primer (MP57) and the backward primer (GIII) are also indicated on the map (used in Steps 30 and 68). B. Nucleotide sequence and amino acid sequence of the Nanobody cloning site. An amber stopcodon (TAG) is located downstream of the His-tag.

Supplementary Figure 3 Map and sequence information for phage display vector pMESy4.

A. Map of phage display vector pMESy4 (4513bp; Genbank KF415192). Nanobodies can be cloned as PstI-Eco91I fragments (Step 26) in between the pelB sequence (pelB) coding for the secretion signal peptide of PelB and a 6xHis-tag (His-tag), followed by the CaptureSelectTM C-tag, the hemagglutinin tag (HA-tag) and gene III of filamentous phage fd (fd geneIII). Other annotations are the lac promotor/operator (Plac/operator), the gene conferring ampicillin resistance (AmpR), the bacterial origin of replication (rep) and the f1 origin of replication (f1ori). The annealing sites for the forward sequencing primer (MP57) and the backward primer (GIII) are also indicated on the map (used in Steps 30 and 68). B. Nucleotide sequence and amino acid sequence of the Nanobody cloning site. An amber stopcodon (TAG) is located downstream of the CaptureSelectTM C-tag.

Supplementary information

Supplementary Figure 1

Strategies to amplify the Nanobody repertoire by PCR from PBL cDNA. (PDF 408 kb)

Supplementary Figure 2

Map and sequence information for phage display vector pMES4. (PDF 565 kb)

Supplementary Figure 3

Map and sequence information for phage display vector pMESy4. (PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardon, E., Laeremans, T., Triest, S. et al. A general protocol for the generation of Nanobodies for structural biology. Nat Protoc 9, 674–693 (2014). https://doi.org/10.1038/nprot.2014.039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.039

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing