Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains

Abstract

Mouse embryonic stem cells (mESCs) are key tools for genetic engineering, development of stem cell–based therapies and basic research on pluripotency and early lineage commitment. However, successful derivation of germline-competent embryonic stem cell lines has, until recently, been limited to a small number of inbred mouse strains. Recently, there have been considerable advances in the field of embryonic stem cell biology, particularly in the area of pluripotency maintenance in the epiblast from which the mESCs are derived. Here we describe a protocol for efficient derivation of germline-competent mESCs from any mouse strain, including strains previously deemed nonpermissive. We provide a protocol that is generally applicable to most inbred strains, as well as a variant for nonpermissive strains. By using this protocol, mESCs can be derived in 3 weeks and fully characterized after an additional 12 weeks, at efficiencies as high as 90% and in any strain background.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of preimplantation development in mice.
Figure 2: NANOG immunolabeling in ICM outgrowths grown in the presence of 2i/LIF with or without serum or KOSR.
Figure 3: Overview of blastocyst-stage embryo collection.
Figure 4: Overview of ES cell derivation process.
Figure 5: Emergent mESC morphology.
Figure 6: mESC characterization by immunolabeling of pluripotency biomarkers.
Figure 7: Karyotypic analysis of ES cells.
Figure 8: Germline testing of mESC lines.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brook, F.A. & Gardner, R.L. The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Natl. Acad. Sci. USA 94, 5709–5712 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bradley, A., Hasty, P., Davis, A. & Ramirez-Solis, R. Modifying the mouse: design and desire. Biotechnology 10, 534–539 (1992).

    CAS  PubMed  Google Scholar 

  5. Eppig, J.T., Blake, J.A., Bult, C.J., Kadin, J.A. & Richardson, J.E. The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res. 40, D881–D886 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Bradley, A. et al. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm. Genome 23, 580–586 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kawase, E. et al. Strain difference in establishment of mouse embryonic stem (ES) cell lines. Int. J. Dev. Biol. 38, 385–390 (1994).

    CAS  PubMed  Google Scholar 

  8. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buehr, M. et al. Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines. Biol. Reprod. 68, 222–229 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, H. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zschemisch, N.H. et al. Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol. 13, 60 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hauschild, J. et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 108, 12013–12017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Handyside, A.H. et al. Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet 1, 347–349 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Buehr, M. & Smith, A. Genesis of embryonic stem cells. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358, 1397–1402: discussion 1402 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ying, Q.L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buehr, M. et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287–1298 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Li, P. et al. Germline competent embryonic stem cells derived from rat blastocysts. Cell 135, 1299–1310 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Silva, J. et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 6, e253 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hanna, J. et al. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4, 513–524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reinholdt, L.G. et al. Generating embryonic stem cells from the inbred mouse strain DBA/2J, a model of glaucoma and other complex diseases. PLoS One 7, e50081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nichols, J. et al. Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat. Med. 15, 814–818 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Tong, C., Li, P., Wu, N.L., Yan, Y. & Ying, Q.L. Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467, 211–213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nichols, J., Silva, J., Roode, M. & Smith, A. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136, 3215–3222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ying, Q.L. & Smith, A.G. Defined conditions for neural commitment and differentiation. Methods Enzymol. 365, 327–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Markoulaki, S., Meissner, A. & Jaenisch, R. Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse. Methods 45, 101–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Production of chimeras. in Manipulating the Mouse Embryo: a Laboratory Manual 453–506 (Cold Spring Harbor Laboratory Press, 2003).

  28. Petkov, P.M. et al. An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res. 14, 1806–1811 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Kuppeveld, F.J. et al. 16S rRNA-based polymerase chain reaction compared with culture and serological methods for diagnosis of Mycoplasma pneumoniae infection. Eur. J. Clin. Microbiol. Infect. Dis. 13, 401–405 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Jackson, I.J. Molecular and developmental genetics of mouse coat color. Annu. Rev. Genet. 28, 189–217 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Roach, M.L. & McNeish, J.D. Methods for the isolation and maintenance of murine embryonic stem cells. Methods Mol. Biol. 185, 1–16 (2002).

    CAS  PubMed  Google Scholar 

  32. Roach, M.L., Stock, J.L., Byrum, R., Koller, B.H. & McNeish, J.D. A new embryonic stem cell line from DBA/1lacJ mice allows genetic modification in a murine model of human inflammation. Exp. Cell Res. 221, 520–525 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Brown, D.G., Willington, M.A., Findlay, I. & Muggleton-Harris, A.L. Criteria that optimize the potential of murine embryonic stem cells for in vitro and in vivo developmental studies. In Vitro Cell. Dev. Biol. 28A, 773–778 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Nagafuchi, S. et al. Establishment of an embryonic stem (ES) cell line derived from a non-obese diabetic (NOD) mouse: in vivo differentiation into lymphocytes and potential for germ line transmission. FEBS Lett. 455, 101–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Gardner, R.L. & Brook, F.A. Reflections on the biology of embryonic stem (ES) cells. Int. J. Dev. Biol. 41, 235–243 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institutes of Health (NIH), Office of Research Infrastructure Programs (grant nos. U42-OD011102, U42-OD010921). Work in A.-K.H.'s laboratory is supported by the Human Frontiers Sciences Program and the NIH (grant nos. RO1-HD052115 and RO1-DK084391). We are grateful for the excellent microinjection services provided by the Cell Biology and Microinjection core at The Jackson Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and L.G.R. developed the protocol and wrote the manuscript. C.B., I.G. and L.R.D. contributed to and/or supported the development of the protocol. N.S. and A.-K.H. contributed to and expanded the protocol and contributed to the writing manuscript.

Corresponding author

Correspondence to Laura G Reinholdt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czechanski, A., Byers, C., Greenstein, I. et al. Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nat Protoc 9, 559–574 (2014). https://doi.org/10.1038/nprot.2014.030

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.030

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing