Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis

An Erratum to this article was published on 25 February 2016

This article has been updated

Abstract

The identification of sites where RNA-binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV cross-linking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from in vivo cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high-throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide maps of RNA binding with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. The application of CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of cross-link–induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes 8 d to prepare RNA for sequencing. Established pipelines for data analysis, including those for CIMS, take 3–4 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the HITS-CLIP protocol.
Figure 2: Sample CLIP autoradiograms (Step 34).
Figure 3: Sample RT-PCR from Ago CLIP experiments (Step 72).
Figure 4: Proportion of unique CLIP tags among all reads that were unambiguously mapped to the reference genome with regard to the size of the matched region (Step 97).
Figure 5: The positional profiles of each type of mutation relative to the 5′ end of reads (Step 105).
Figure 6: Enrichment of miR-124 seed site matches in sequences (±10 nt) around robust CIMS (FDR ≤0.
Figure 7: An example of a CIMS that precisely maps the Ago-miR-124-mRNA ternary complex (Step 112).

Similar content being viewed by others

Change history

  • 24 February 2016

     In the version of this article initially published, units were incorrectly reported in Step 2 of the Procedure. They have been changed from 'mJ cm2' to 'mJ per cm2' in four instances. In addition, units that previously read '1 = 0.1 J per m2' have been changed to '1 = 1 J per m2'. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Czech, B. & Hannon, G.J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Joshua-Tor, L. & Hannon, G.J. Ancestral roles of small RNAs: an Ago-centric perspective. Cold Spring Harb. Perspect. Biol. 3, a003772 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Chi, S.W., Zang, J.B., Mele, A. & Darnell, R.B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gaken, J. et al. A functional assay for microRNA target identification and validation. Nucleic Acids Res. 40, e75 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chi, S.W., Hannon, G.J. & Darnell, R.B. An alternative mode of microRNA target recognition. Nat. Struct. Mol. Biol. 19, 321–327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ule, J., Jensen, K., Mele, A. & Darnell, R.B. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods 37, 376–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, C. & Darnell, R.B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol. 29, 607–614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Granneman, S., Kudla, G., Petfalski, E. & Tollervey, D. Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc. Natl. Acad. Sci. USA 106, 9613–9618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat. Genet. 37, 844–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Ule, J. & Darnell, R.B. RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr. Opin. Neurobiol. 16, 102–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Darnell, R.B. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev. RNA 1, 266–286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Urlaub, H., Hartmuth, K. & Luhrmann, R. A two-tracked approach to analyze RNA-protein cross-linking sites in native, nonlabeled small nuclear ribonucleoprotein particles. Methods 26, 170–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Licatalosi, D.D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Licatalosi, D.D. & Darnell, R.B. RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet. 11, 75–87 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanford, J.R. et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 19, 381–394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tollervey, J.R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Darnell, J.C. et al. FMRP Stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Racca, C. et al. The neuronal splicing factor Nova co-localizes with target RNAs in the dendrite. Front Neural Circuits 4, 5 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R.B. Nova2 regulates neuronal migration through an RNA switch in disabled-1 signaling. Neuron 66, 848–858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xue, Y. et al. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol. Cell 36, 996–1006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Licatalosi, D.D. et al. Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev. 26, 1626–1642 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mukherjee, N. et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol. Cell 43, 327–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lebedeva, S. et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 43, 340–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Ince-Dunn, G. et al. Neuronal Elav-like (Hu) proteins regulate RNA splicing and abundance to control glutamate levels and neuronal excitability. Neuron 75, 1067–1080 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Z. et al. iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol. 8, 1–16 (2010).

    Article  Google Scholar 

  31. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yeo, G.W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Charizanis, K. et al. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 75, 437–450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leung, A.K. et al. Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat. Struct. Mol. Biol. 18, 237–244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loeb, G.B. et al. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol. Cell 48, 760–770 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riley, K.J. et al. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J. 31, 2207–2221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zisoulis, D.G. et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 17, 173–179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mili, S. & Steitz, J.A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kishore, S. et al. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods 8, 559–564 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kemeny-Beke, A. et al. Antiproliferative effect of 4-thiouridylate on OCM-1 uveal melanoma cells. Eur. J. Ophthalmol. 16, 680–685 (2006).

    Article  PubMed  Google Scholar 

  43. Burger, K. et al. 4-thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol. 10 (2013).

  44. Khan, A.A. et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotechnol. 27, 549–555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hafner, M. et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 17, 1697–1712 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhuang, F., Fuchs, R.T., Sun, Z., Zheng, Y. & Robb, G.B. Structural bias in T4 RNA ligase-mediated 3-adapter ligation. Nucleic Acids Res. 40, e54 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harlow, E. & Lane, D. Antibodies, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1988).

  48. Darnell, J.C., Mele, A. & Darnell, R.B. Mapping of in vivo RNA binding sites by UV-crosslinking immunoprecipitation (CLIP). In Molecular Cloning: A Laboratory Manual (eds Green, M. & Sambrook, J.) (Cold Spring Harbor Laboratory Press, 2012).

  49. Parker, J.S. How to slice: snapshots of Argonaute in action. Silence 1, 3 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Granneman, S., Petfalski, E., Swiatkowska, A. & Tollervey, D. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J. 29, 2026–2036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bohnsack, M.T. et al. Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis. Mol. Cell 36, 583–592 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, E.T. et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150, 710–724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cho, J. et al. LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell 151, 765–777 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Rhead, B. et al. The UCSC Genome Browser database: update 2010. Nucleic Acids Res. 38, D613–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  57. Tempel, S. Using and understanding RepeatMasker. Methods Mol. Biol. 859, 29–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Sugimoto, Y. et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol. 13, R67 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cooper, G.M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 15, 901–913 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Z. Mourelatos for sharing 2A8 antibody. We thank S. Dewell, C. Zhao and the entire staff of the Rockefeller University Genomics Resource Center for their expertise and support. We are grateful to sources of support for M.J.M. (Jane Coffin Childs Fund for Medical Research), C.Z. (US National Institutes of Health (NIH) grant no. K99/R00GM95713 and Simons Foundation grant no. 297990) and R.B.D. (grant nos. NIH NS081706 and NIH NS34389, the Simons Foundation and the Howard Hughes Medical Institute).

Author information

Authors and Affiliations

Authors

Contributions

M.J.M. wrote the sections of the manuscript pertaining to the experimental protocol and produced the data in Figure 2. C.Z. developed the methods and wrote manuscript sections pertaining to the bioinformatic protocol, including the analyses in Figures 4,5,6,7. E.C.G. produced the data in Figure 3a. A.M. produced the data in Figure 3b. J.C.D. contributed to writing sections of the experimental protocol. R.B.D. contributed to writing all sections and directed the development of all experimental and bioinformatic methods described here.

Corresponding author

Correspondence to Robert B Darnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, M., Zhang, C., Gantman, E. et al. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat Protoc 9, 263–293 (2014). https://doi.org/10.1038/nprot.2014.012

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.012

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing