Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Surgical models for cardiac regeneration in neonatal mice

Abstract

Although amphibian and fish models of heart regeneration have existed for decades, a mammalian equivalent has long remained elusive. Our discovery of a brief postnatal window for heart regeneration in neonatal mice has led to the establishment of surgical models for cardiac regenerative studies in mammals for the first time. This protocol describes a 10-min surgical procedure to induce cardiac injury in 1-d-old neonatal mice. This allows for the analysis of cardiac regeneration after surgical amputation of the left ventricle (LV) (apical resection) and coronary artery occlusion (myocardial infarction (MI)). A comparative analysis of neonatal and adult responses to myocardial injury should enable identification of the key differences between regenerative and nonregenerative responses to cardiac injury. This protocol can also be adapted to the growing repertoire of genetic models available in the mouse, and it provides a valuable tool for unlocking the molecular mechanisms that guide mammalian heart regeneration during early postnatal life.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Apical resection of the neonatal mouse heart.
Figure 2: MI of the neonatal mouse heart.

Similar content being viewed by others

References

  1. Mosterd, A. & Hoes, A.W. Clinical epidemiology of heart failure. Heart 93, 1137–1146 (2007).

    Article  Google Scholar 

  2. Jessup, M. & Brozena, S. Heart failure. New Engl. J. Med. 348, 2007–2018 (2003).

    Article  Google Scholar 

  3. Sutton, M.G. & Sharpe, N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101, 2981–2988 (2000).

    Article  CAS  Google Scholar 

  4. Laflamme, M.A. & Murry, C.E. Heart regeneration. Nature 473, 326–335 (2011).

    Article  CAS  Google Scholar 

  5. Murry, C.E., Reinecke, H. & Pabon, LM. Regeneration gaps: observations on stem cells and cardiac repair. J. Am. Coll. Cardiol. 47, 1777–1785 (2006).

    Article  Google Scholar 

  6. Laflamme, M.A. & Murry, C.E. Regenerating the heart. Nat. Biotechnol. 23, 845–856 (2005).

    Article  CAS  Google Scholar 

  7. Poss, K.D., Wilson, L.G. & Keating, M.T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  Google Scholar 

  8. Oberpriller, J.O. & Oberpriller, J.C. Response of the adult newt ventricle to injury. J. Exp. Zool. 187, 249–253 (1974).

    Article  CAS  Google Scholar 

  9. Mahmoud, A.I. & Porrello, E.R. Turning back the cardiac regenerative clock: Lessons from the neonate. Trends Cardiovasc. Med. 22, 128–133 (2012).

    Article  Google Scholar 

  10. Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606–609 (2010).

    Article  CAS  Google Scholar 

  11. Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464, 601–605 (2010).

    Article  CAS  Google Scholar 

  12. Porrello, E.R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  Google Scholar 

  13. Porrello, E.R. et al. Regulation of neonatal and adult mammalian heart regeneration by the mir-15 family. Proc. Natl. Acad. Sci. USA 110, 187–192 (2013).

    Article  CAS  Google Scholar 

  14. Jesty, S.A. et al. C-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc. Natl. Acad. Sci. USA 109, 13380–13385 (2012).

    Article  CAS  Google Scholar 

  15. Gonzalez-Rosa, J.M., Martin, V., Peralta, M., Torres, M. & Mercader, N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 138, 1663–1674 (2011).

    Article  CAS  Google Scholar 

  16. Egger, B., Ladurner, P., Nimeth, K., Gschwentner, R. & Rieger, R. The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Dev. Genes Evol. 216, 565–577 (2006).

    Article  CAS  Google Scholar 

  17. Huang, N.F. et al. A rodent model of myocardial infarction for testing the efficacy of cells and polymers for myocardial reconstruction. Nat. Protoc. 1, 1596–1609 (2006).

    Article  CAS  Google Scholar 

  18. McCall, F.C. et al. Myocardial infarction and intramyocardial injection models in swine. Nat. Protoc. 7, 1479–1496 (2012).

    Article  CAS  Google Scholar 

  19. van Laake, L.W. et al. Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nat. Protoc. 2, 2551–2567 (2007).

    Article  CAS  Google Scholar 

  20. Christensen, G., Minamisawa, S., Gruber, P.J., Wang, Y. & Chien, K.R. High-efficiency, long-term cardiac expression of foreign genes in living mouse embryos and neonates. Circulation 101, 178–184 (2000).

    Article  CAS  Google Scholar 

  21. Phifer, C.B. & Terry, L.M. Use of hypothermia for general anesthesia in preweanling rodents. Physiol. Behav. 38, 887–890 (1986).

    Article  CAS  Google Scholar 

  22. Kulandavelu, S. et al. Embryonic and neonatal phenotyping of genetically engineered mice. ILAR J. 47, 103–117 (2006).

    Article  CAS  Google Scholar 

  23. Sohal, D.S. et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circulation Res. 89, 20–25 (2001).

    Article  CAS  Google Scholar 

  24. Soriano, P Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Cabrera for graphical assistance. This work was supported by the National Health and Medical Research Council and National Heart Foundation of Australia (E.R.P.), a cardiovascular research scholar award from Gilead Sciences, a Grant-in-Aid award from the American Heart Association and an NIH R01 grant (1R01HL115275-01; H.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

A.I.M., E.R.P., E.N.O. and H.A.S. designed the experiments. A.I.M. and E.R.P. performed the experiments. A.I.M., E.R.P., E.N.O. and H.A.S. analyzed the data. A.I.M., W.K. and H.A.S. made the figures. A.I.M., E.R.P. and H.A.S. wrote the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Hesham A Sadek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoud, A., Porrello, E., Kimura, W. et al. Surgical models for cardiac regeneration in neonatal mice. Nat Protoc 9, 305–311 (2014). https://doi.org/10.1038/nprot.2014.021

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.021

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing