Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis

Abstract

Extracellular flux (XF) analysis has become a mainstream method for measuring mitochondrial function in cells and tissues. Although this technique is commonly used to measure bioenergetics in intact cells, we outline here a detailed XF protocol for measuring respiration in permeabilized cells. Cells are permeabilized using saponin (SAP), digitonin (DIG) or recombinant perfringolysin O (rPFO) (XF-plasma membrane permeabilizer (PMP) reagent), and they are provided with specific substrates to measure complex I– or complex II–mediated respiratory activity, complex III+IV respiratory activity or complex IV activity. Medium- and long-chain acylcarnitines or glutamine may also be provided for measuring fatty acid (FA) oxidation or glutamine oxidation, respectively. This protocol uses a minimal number of cells compared with other protocols and does not require isolation of mitochondria. The results are highly reproducible, and mitochondria remain well coupled. Collectively, this protocol provides comprehensive and detailed information regarding mitochondrial activity and efficiency, and, after preparative steps, it takes 6–8 h to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key steps in mitochondrial metabolism and oxidative phosphorylation.
Figure 2: Experimental procedure flowchart.
Figure 3: Cell density optimization.
Figure 4: The permeabilization of plasma membrane permits the controlled delivery of substrates into mitochondria.
Figure 5: Assessment of mitochondrial damage by cytochrome c release from mitochondria.
Figure 6: XF24 plate design and some experimental layouts for permeabilized cell assays.
Figure 7: Pipette orientation and placement during cell seeding, medium addition and medium aspiration.
Figure 8: Example of a permeabilized cell assay protocol by using an XF 24 analyzer.
Figure 9: Indices of mitochondrial function.
Figure 10: Anticipated changes in respiration with provision of diverse respiratory substrates in the XF24 permeabilized cell assay.

Similar content being viewed by others

References

  1. Chance, B. & Williams, G.R. Respiratory enzymes in oxidative phosphorylation. II. Difference spectra. J. Biol. Chem. 217, 395–407 (1955).

    Article  CAS  PubMed  Google Scholar 

  2. Chance, B. & Williams, G.R. Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J. Biol. Chem. 221, 477–489 (1956).

    Article  CAS  PubMed  Google Scholar 

  3. Schneider, W.C. Intracellular distribution of enzymes; the oxidation of octanoic acid by rat liver fractions. J. Biol. Chem. 176, 259–266 (1948).

    Article  CAS  PubMed  Google Scholar 

  4. Lardy, H.A. & Wellman, H. Oxidative phosphorylations; role of inorganic phosphate and acceptor systems in control of metabolic rates. J. Biol. Chem. 195, 215–224 (1952).

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  CAS  PubMed  Google Scholar 

  6. Williams, G.R. Dynamic aspects of the tricarboxylic acid cycle in isolated mitochondria. Can. J. Biochem. 43, 603–615 (1965).

    Article  CAS  PubMed  Google Scholar 

  7. Brand, M.D. & Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Divakaruni, A.S. & Brand, M.D. The regulation and physiology of mitochondrial proton leak. Physiology 26, 192–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Hill, B.G. et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol. Chem. 393, 1485–1512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lambert, A.J. & Brand, M.D. Reactive oxygen species production by mitochondria. Methods Mol. Biol. 554, 165–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Hunter, D.R., Haworth, R.A. & Southard, J.H. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J. Biol. Chem. 251, 5069–5077 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Brookes, P.S. et al. Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J. Biol. Chem. 275, 20474–20479 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. West, M.B. et al. Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation 118, 1970–1978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brenner, C. & Moulin, M. Physiological roles of the permeability transition pore. Circ Res. 111, 1237–1247 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Rapaport, D., Neupert, W. & Lill, R. Mitochondrial protein import. Tom40 plays a major role in targeting and translocation of preproteins by forming a specific binding site for the presequence. J. Biol. Chem. 272, 18725–18731 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Freeman, K.B., Yatscoff, R.W. & Ridley, R.G. Experimental approaches to the study of the biogenesis of mammalian mitochondrial proteins. Biochem. Cell Biol. 64, 1108–1114 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Bailey, S.M., Landar, A. & Darley-Usmar, V. Mitochondrial proteomics in free radical research. Free Radic. Biol. Med. 38, 175–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Wong, R., Aponte, A.M., Steenbergen, C. & Murphy, E. Cardioprotection leads to novel changes in the mitochondrial proteome. Am. J. Physiol. Heart Circ. Physiol. 298, H75–H91 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Kasumov, T. et al. Assessment of cardiac proteome dynamics with heavy water: slower protein synthesis rates in interfibrillar than subsarcolemmal mitochondria. Am. J. Physiol. Heart Circ. Physiol. 304, H1201–H1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc. 2, 287–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Piper, H.M. et al. Development of ischemia-induced damage in defined mitochondrial subpopulations. J. Mol. Cell Cardiol. 17, 885–896 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Picard, M. et al. Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 9, 1032–1046 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Picard, M., Taivassalo, T., Gouspillou, G. & Hepple, R.T. Mitochondria: isolation, structure and function. J. Physiol. 589, 4413–4421 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Picard, M. et al. Mitochondrial structure and function are disrupted by standard isolation methods. PLoS ONE 6, e18317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferrick, D.A., Neilson, A. & Beeson, C. Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov. Today 13, 268–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Nadanaciva, S. et al. Assessment of drug-induced mitochondrial dysfunction via altered cellular respiration and acidification measured in a 96-well platform. J. Bioenerg. Biomembr. 44, 421–437 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Hill, B.G., Dranka, B.P., Zou, L., Chatham, J.C. & Darley-Usmar, V.M. Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochem. J. 424, 99–107 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Hill, B.G., Higdon, A.N., Dranka, B.P. & Darley-Usmar, V.M. Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation. Biochim. Biophys. Acta 1797, 285–295 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Dranka, B.P., Hill, B.G. & Darley-Usmar, V.M. Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species. Free Radic Biol. Med. 48, 905–914 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dranka, B.P. et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic. Biol. Med. 51, 1621–1635 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sansbury, B.E., Jones, S.P., Riggs, D.W., Darley-Usmar, V.M. & Hill, B.G. Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation. Chem. Biol. Interact. 191, 288–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Sansbury, B.E. et al. Responses of hypertrophied myocytes to reactive species: implications for glycolysis and electrophile metabolism. Biochem. J. 435, 519–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Readnower, R.D., Brainard, R.E., Hill, B.G. & Jones, S.P. Standardized bioenergetic profiling of adult mouse cardiomyocytes. Physiol. Genomics 44, 1208–1213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sansbury, B.E. et al. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ. Res. 111, 1176–1189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Salabei, J.K. & Hill, B.G. Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation. Redox Biol. 1, 542–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Divakaruni, A.S. et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl. Acad. Sci. USA 110, 5422–5427 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clerc, P. & Polster, B.M. Investigation of mitochondrial dysfunction by sequential microplate-based respiration measurements from intact and permeabilized neurons. PLoS ONE 7, e34465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krippner, A., Matsuno-Yagi, A., Gottlieb, R.A. & Babior, B.M. Loss of function of cytochrome c in Jurkat cells undergoing fas-mediated apoptosis. J. Biol. Chem. 271, 21629–21636 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Ye, F. & Hoppel, C.L. Measuring oxidative phosphorylation in human skin fibroblasts. Anal. Biochem. 437, 52–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Kuznetsov, A.V. et al. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat. Protoc. 3, 965–976 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Fiskum, G., Craig, S.W., Decker, G.L. & Lehninger, A.L. The cytoskeleton of digitonin-treated rat hepatocytes. Proc. Natl. Acad. Sci. USA 77, 3430–3434 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Safiulina, D., Kaasik, A., Seppet, E., Peet, N. & Zharkovsky, A. Method for in situ detection of the mitochondrial function in neurons. J. Neurosci. Methods 137, 87–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Saks, V.A. et al. Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol. Cell Biochem. 184, 81–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Bach, D. et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278, 17190–17197 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Mitra, K., Wunder, C., Roysam, B., Lin, G. & Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 106, 11960–11965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sarin, M. et al. Alterations in c-Myc phenotypes resulting from dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Cell Death Dis. 4, e670 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hagenbuchner, J., Kuznetsov, A.V., Obexer, P. & Ausserlechner, M.J. BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery. Oncogene 32, 4748–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Chacko, B.K. et al. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes, monocytes, and neutrophils, and the oxidative burst from human blood. Lab. Invest. 93, 690–700 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Puchowicz, M.A. et al. Oxidative phosphorylation analysis: assessing the integrated functional activity of human skeletal muscle mitochondria–case studies. Mitochondrion 4, 377–385 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Hatefi, Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54, 1015–1069 (1985).

    Article  CAS  PubMed  Google Scholar 

  52. Lesnefsky, E.J. et al. Aging decreases electron transport complex III activity in heart interfibrillar mitochondria by alteration of the cytochrome c binding site. J. Mol. Cell Cardiol. 33, 37–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Marres, C.A. & de Vries, S. Reduction of the Q-pool by duroquinol via the two quinone-binding sites of the QH2: cytochrome c oxidoreductase. A model for the equilibrium between cytochrome b-562 and the Q-pool. Biochim. Biophys. Acta 1057, 51–63 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Ray, S., Dutta, S., Halder, J. & Ray, M. Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochem. J. 303 (Part 1): 69–72 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gudz, T.I., Tserng, K.Y. & Hoppel, C.L. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J. Biol. Chem. 272, 24154–24158 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Nicholls, D.G. & Ferguson, S.J. Bioenergetics 3 3rd edn, (Academic Press, 2002).

  57. Kerner, J. & Hoppel, C. Fatty acid import into mitochondria. Biochim. Biophys. Acta 1486, 1–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Morrow, R.J., Neely, M.L. & Paradise, R.R. Functional utilization of palmitate, octanoate, and glucose by the isolated rat heart. Proc. Soc. Exp. Biol. Med. 142, 223–229 (1973).

    Article  CAS  PubMed  Google Scholar 

  59. Lewandowski, E.D., Chari, M.V., Roberts, R. & Johnston, D.L. NMR studies of β-oxidation and short-chain fatty acid metabolism during recovery of reperfused hearts. Am. J. Physiol. 261, H354–H363 (1991).

    CAS  PubMed  Google Scholar 

  60. Eaton, S. Control of mitochondrial β-oxidation flux. Prog. Lipid Res. 41, 197–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Marin-Garcia, J. & Goldenthal, M.J. Fatty acid metabolism in cardiac failure: biochemical, genetic and cellular analysis. Cardiovasc. Res. 54, 516–527 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Houten, S.M. & Wanders, R.J. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab Dis. 33, 469–477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kingsley-Hickman, P.B., Sako, E.Y., Ugurbil, K., From, A.H. & Foker, J.E. 31P NMR measurement of mitochondrial uncoupling in isolated rat hearts. J. Biol. Chem. 265, 1545–1550 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Bjorntorp, P. The oxidation of fatty acids combined with albumin by isolated rat liver mitochondria. J. Biol. Chem. 241, 1537–1543 (1966).

    Article  CAS  PubMed  Google Scholar 

  65. Harper, R.D. & Saggerson, E.D. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat. Biochem. J. 152, 485–494 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G. & Thompson, C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Csibi, A. et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840–854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kovacevic, Z. & McGivan, J.D. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol. Rev. 63, 547–605 (1983).

    Article  CAS  PubMed  Google Scholar 

  69. Reynolds, M.R. et al. Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 1–11 (2013).

  70. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA 107, 8788–8793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Owen, O.E., Kalhan, S.C. & Hanson, R.W. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277, 30409–30412 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Papkovsky, D.B. Phosphorescent Oxygen-Sensitive Probes (Springer, 2012).

  73. Jonckheere, A.I. et al. High-throughput assay to measure oxygen consumption in digitonin-permeabilized cells of patients with mitochondrial disorders. Clin. Chem. 56, 424–431 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Will, Y., Hynes, J., Ogurtsov, V.I. & Papkovsky, D.B. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes. Nat. Protoc. 1, 2563–2572 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Gerencser, A.A. et al. Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal. Chem. 81, 6868–6878 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rossjohn, J. et al. Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J. Mol. Biol. 367, 1227–1236 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramachandran, R., Heuck, A.P., Tweten, R.K. & Johnson, A.E. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat. Struct. Biol. 9, 823–827 (2002).

    CAS  PubMed  Google Scholar 

  78. Heuck, A.P., Moe, P.C. & Johnson, B.B. The cholesterol-dependent cytolysin family of Gram-positive bacterial toxins. Subcell Biochem. 51, 551–577 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Sanyal, S., Claessen, J.H. & Ploegh, H.L. A viral deubiquitylating enzyme restores dislocation of substrates from the endoplasmic reticulum (ER) in semi-intact cells. J. Biol. Chem. 287, 23594–23603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ohno-Iwashita, Y., Iwamoto, M., Ando, S. & Iwashita, S. Effect of lipidic factors on membrane cholesterol topology–mode of binding of θ-toxin to cholesterol in liposomes. Biochim. Biophys. Acta 1109, 81–90 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Heuck, A.P., Hotze, E.M., Tweten, R.K. & Johnson, A.E. Mechanism of membrane insertion of a multimeric β-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Mol. Cell 6, 1233–1242 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Johnson, B.B. et al. Modifications in perfringolysin O domain 4 alter the cholesterol concentration threshold required for binding. Biochemistry 51, 3373–3382 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Rogers, G.W. et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS ONE 6, e21746 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Salabei, J.K. et al. PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochem. J. 451, 375–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Wittig, I., Braun, H.P. & Schagger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Rosca, M.G. et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc. Res. 80, 30–39 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Alfonso-Pecchio, A., Garcia, M., Leonardi, R. & Jackowski, S. Compartmentalization of mammalian pantothenate kinases. PLoS ONE 7, e49509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the US National Institutes of Health (grant nos. GM103492 and HL078825).

Author information

Authors and Affiliations

Authors

Contributions

J.K.S., A.A.G. and B.G.H. were involved in all parts of manuscript preparation.

Corresponding author

Correspondence to Bradford G Hill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Experimental design template.

Experimental template designed to assist in designing and executing XF experiments.

Supplementary Figure 2 The presence of BSA in MAS buffer preserves mitochondrial coupling.

(a) XF analyzer trace of OCR over time: Smooth muscle cells were pre-exposed to 3 nM rPFO in MAS buffer in the presence or absence of fatty acid-free BSA. After 5 min pre-exposure to rPFO, cells were loaded into the XF analyzer and OCR recorded. rPFO; recombinant perfringolysin (XF PMP). (b) RCR values in the absence or presence of BSA in MAS buffer. These data show that BSA is required to optimize mitochondrial coupling. Such preservation of mitochondrial coupling is typically observed when assays are performed in MAS buffer containing 2-4 mg/ml BSA.

Supplementary Figure 3 Comparison of rPFO and saponin for use in the permeabilized cell assay.

(a) XF analyzer traces of OCR in cells exposed to SAP/succ/rot/ADP or to rPFO/succ/rot/ADP. Cells were either pretreated with permeabilizer immediately before inserting plate into the XF24 analyzer (closed circles and triangles) and then given succ/rot/ADP, or media on cells was changed to MAS buffer in the absence of permeabilizing agent and then permeabilizer/succinate/rotenone/ADP were co-injected (opened circles and triangles); (b) States 3 and 4 OCR values in rPFO- and saponin-permeabilized cells. Values were calculated from cells to which permeabilizer was co-injected with substrates (i.e., opened circles and triangles); (c) RCR values calculated from (b). These results show that, in smooth muscle cells, rPFO (PMP reagent) and saponin work equally well in permeabilized cell assays. Furthermore, these data suggest that permeabilization before insertion of plate into the XF or during the XF assay works equally well. However, results may be highly dependent on the cell type. The activity of mitochondria in some cell types may be negatively affected by detergent-based permeabilizers such as saponin and the timing of permeabilization could prove critical. Therefore, in untested cell lines, the choice of permeabilizer and the timing of permeabilizer addition would need to be determined empirically.

Supplementary information

Supplementary Figure 1

Experimental design template. (PDF 51 kb)

Supplementary Figure 2

The presence of BSA in MAS buffer preserves mitochondrial coupling. (PDF 32 kb)

Supplementary Figure 3

Comparison of rPFO and saponin for use in the permeabilized cell assay. (PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salabei, J., Gibb, A. & Hill, B. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc 9, 421–438 (2014). https://doi.org/10.1038/nprot.2014.018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.018

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing