Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Production and analysis of immunomodulatory excretory-secretory products from the mouse gastrointestinal nematode Heligmosomoides polygyrus bakeri

Abstract

Heligmosomoides polygyrus bakeri (Hpb) infection in mice is a convenient model for studying the pathophysiology and immunology of gastrointestinal (GI) helminth infection. Hpb infection suppresses immune responses to bystander antigens and unrelated pathogens, and it slows the progression and modifies the outcome of immune-mediated diseases. Hpb-derived excretory-secretory (ES) products potently modulate CD4+ helper T cell (TH) responses by inducing regulatory T cells, tolerogenic dendritic cells (DCs) and immunoregulatory cytokines. This observation has spiked interest in identifying the immunomodulatory molecules, especially proteins, in ES products from Hpb and other GI nematodes for development as novel therapies to treat individuals with immune-mediated diseases, such as inflammatory bowel diseases (IBDs). In this protocol, we describe how to (i) maintain Hpb in the laboratory for experimental infections, (ii) collect adult worms from infected mice to generate ES products and (iii) evaluate the modulatory effects of ES products on toll-like receptor (TLR) ligand–induced maturation of CD11c+ DCs. The three major sections of the PROCEDURE can be used independently, and they require 6, 10 and 27 h, respectively. Although other methods use a modified Baermann apparatus to collect Hpb adult worms, we describe a method that involves dissection of adult worms from intestinal tissue. The protocol will be useful to investigators studying the host-parasite interface and identifying and analyzing helminth-derived molecules with therapeutic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life cycle of H. polygyrus bakeri.
Figure 2: Hpb-derived ES products analyzed by denaturing SDS-PAGE followed by silver staining.
Figure 3: Culture of feces from Hpb-infected mice to generate L3-stage larvae (Steps 8–12).
Figure 4: Typical ELISA data from in vitro stimulation of spleen cells with Hpb AWH.
Figure 5: Typical ELISA result of suppression of CpG-ODN-induced BMDC IL-12 secretion by Hpb-derived ES products.

Similar content being viewed by others

References

  1. Fleming, J.O. & Cook, T.D. Multiple sclerosis and the hygiene hypothesis. Neurology 67, 2085–2086 (2006).

    Article  Google Scholar 

  2. Dunne, D.W. & Cooke, A. A worm's eye view of the immune system: consequences for evolution of human autoimmune disease. Nat. Rev. Immunol. 5, 420–426 (2005).

    Article  CAS  Google Scholar 

  3. Molodecky, N.A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54 (2012).

    Article  Google Scholar 

  4. Yazdanbakhsh, M., Kremsner, P.G. & van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002).

    Article  CAS  Google Scholar 

  5. McCarty, T.R., Turkeltaub, J.A. & Hotez, P.J. Global progress towards eliminating gastrointestinal helminth infections. Curr. Opin. Gastroenterol. 30, 18–24 (2014).

    Article  Google Scholar 

  6. Artis, D. Translatability of helminth therapy. Int. J. Parasitol. 43, 189 (2013).

    Article  Google Scholar 

  7. Weinstock, J.V. & Elliott, D.E. Translatability of helminth therapy in inflammatory bowel diseases. Int. J. Parasitol. 43, 245–251 (2013).

    Article  Google Scholar 

  8. Maizels, R.M. et al. Helminth parasites – masters of regulation. Immunol. Rev. 201, 89–116 (2004).

    Article  CAS  Google Scholar 

  9. Johnson, M.J.G., MacDonald, J.A. & McKay, D.M. Parasitic helminths: a pharmacopoeia of anti-inflammatory molecules. Parasitology 136, 125–147 (2008).

    Article  Google Scholar 

  10. Hewitson, J.P., Grainger, J.R. & Maizels, R.M. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol. Biochem. Parasitol. 167, 1–11 (2009).

    Article  CAS  Google Scholar 

  11. Segura, M., Su, Z., Piccirillo, C. & Stevenson, M.M. Impairment of dendritic cell function by excretory-secretory products: a potential mechanism for nematode-induced immunosuppression. Eur. J. Immunol. 37, 1887–1904 (2007).

    Article  CAS  Google Scholar 

  12. Moreno, Y. et al. Proteomic analysis of excretory-secretory products of Heligmosomoides polygyrus assessed with next-generation sequencing transcriptomic information. PLoS Negl. Trop. Dis. 5, e1370 (2011).

    Article  CAS  Google Scholar 

  13. Camberis, M., Le Gros, G. & Urban, J. Jr. Animal models of Nippostrongylus brasiliensis and Heligmosomoides polygyrus. Curr. Protoc. Immunol. S55, 19.12.1–19.12.27 (2003).

    Google Scholar 

  14. Hewitson, J.P. et al. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J. Proteomics 74, 1573–1594 (2011).

    Article  CAS  Google Scholar 

  15. Finkelman, F.D. et al. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annu. Rev. Immunol. 15, 505–533 (1997).

    Article  CAS  Google Scholar 

  16. Gause, W.C., Urban, J.F. & Stadecker, M.J. The immune response to parasitic helminths: insights from murine models. Trends Immunol. 24, 269–277 (2003).

    Article  CAS  Google Scholar 

  17. Reynolds, L.A., Filbey, K.J. & Maizels, R.M. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin. Immunopathol. 34, 829–846 (2012).

    Article  CAS  Google Scholar 

  18. Ben-Smith, A., Wahid, F.N., Lammas, D.A. & Behnke, J.M. The relationship between circulating and intestinal Heligmosomoides polygyrus-specific IgG1 and IgA and resistance to primary infection. Parasite Immunol. 21, 383–395 (1999).

    Article  CAS  Google Scholar 

  19. Robinson, M., Wahid, F., Behnke, J.M. & Gilbert, F.S. Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): dose-dependent expulsion of adult worms. Parasitology 98, 115–124 (1989).

    Article  Google Scholar 

  20. Menge, D.M. et al. Mapping of chromosomal regions influencing immunological responses to gastrointestinal nematode infections in mice. Parasite Immunol. 25, 341–349 (2003).

    Article  CAS  Google Scholar 

  21. Behnke, J.M. & Robinson, M. Genetic control of immunity to Nematospiroides dubius: a 9-day anthelmintic abbreviated immunizing regime which separates weak and strong responder stains of mice. Parasite Immunol. 7, 235–253 (1985).

    Article  CAS  Google Scholar 

  22. Sukhdeo, M.V., O'Grady, R.T. & Hsu, S.C. The site selected by the larvae of Heligmosomoides polygyrus. J. Helminthol. 58, 19–23 (1984).

    Article  CAS  Google Scholar 

  23. Behnke, J.M. et al. Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): downregulation of specific cytokine secretion (IL-9 and IL-10) correlates with poor mastocytosis and chronic survival of adult worms. Parasite Immunol. 15, 415–421 (1993).

    Article  CAS  Google Scholar 

  24. Wahid, F.N. et al. Immunological relations during primary infection with Heligmosomoides polygyrus: TH2 cytokines and primary response phenotype. Parasitology 108, 461–471 (1994).

    Article  CAS  Google Scholar 

  25. Sutton, T.L. et al. Anti-inflammatory mechanisms of enteric Heligmosomoides polygyrus infection against trinitrobenzene sulfonic acid-induced colitis in a murine model. Infect. Immun. 76, 4772–4782 (2008).

    Article  CAS  Google Scholar 

  26. Su, Z. et al. Impairment of protective immunity to blood-stage malaria by concurrent nematode infection. Infect. Immun. 73, 3531–3539 (2005).

    Article  CAS  Google Scholar 

  27. Weng, M. et al. Alternatively activated macrophages in intestinal helminth infection: effects on concurrent bacterial colitis. J. Immunol. 179, 4721–4731 (2007).

    Article  CAS  Google Scholar 

  28. Blum, A.M. et al. Heligmosomoides polygyrus bakeri induces tolerogenic dendritic cells that block colitis and prevent antigen-specific gut T cell responses. J. Immunol. 189, 2512–2520 (2012).

    Article  CAS  Google Scholar 

  29. Anthony, R.M. et al. Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat. Med. 12, 955–960 (2006).

    Article  CAS  Google Scholar 

  30. Esser-von Bieren, J. et al. Antibodies trap tissue migrating helminth larvae and prevent tissue damage by driving IL-4Rα–independent alternative differentiation of macrophages. PLoS Pathog. 9, e1003771 (2013).

    Article  Google Scholar 

  31. Salgame, P., Yap, G.S. & Gause, W.C. Effect of helminth-induced immunity on infections with microbial pathogens. Nat. Immunol. 14, 1118–1126 (2013).

    Article  CAS  Google Scholar 

  32. McSorley, H.J., Hewitson, J.P. & Maizels, R.M. Immunomodulation by helminth parasites: defining mechanisms and mediators. Int. J. Parasitol. 43, 301 (2013).

    Article  CAS  Google Scholar 

  33. Grainger, J.R. et al. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J. Exp. Med. 207, 2331–2341 (2010).

    Article  CAS  Google Scholar 

  34. Wilson, M.S. et al. Suppression of allergic airway inflammation by helminth-induced regulatory cells. J. Exp. Med. 202, 1199–1212.

  35. Rzepecka, J., Donskow-Schmelter, K. & Doligalska, M. Heligmosomoides polygyrus infection down-regulates eotaxin concentration and CCR3 expression on lung eosinophils in murine allergic pulmonary inflammation. Parasite Immunol. 29, 405–413 (2007).

    Article  CAS  Google Scholar 

  36. McSorley, H.J. et al. Suppression of type 2 immunity and allergic airway inflammation by secreted products of the helminth Heligmosomoides polygyrus. Eur. J. Immunol. 42, 2667–2682 (2012).

    Article  CAS  Google Scholar 

  37. Crawford, C., Behnke, J.M. & Pritchard, D.I. Suppression of heterologous immunity by Nematospiroides dubuis antigens in vitro. Int. J. Parasitol. 19, 29–34 (1989).

    Article  CAS  Google Scholar 

  38. Monroy, F.G., Dobson, C. & Adams, J.H. Low-molecular-weight immunosuppressors secreted by adult Nematospiroides dubuis. Int. J. Parasitol. 19, 125–127 (1989).

    Article  CAS  Google Scholar 

  39. Telford, G. et al. Heligmosomoides polygyrus immunomodulatory factor (IMF) targets T- lymphocytes. Parasite Immunol. 20, 601–611 (1998).

    Article  CAS  Google Scholar 

  40. Hewitson, J.P. et al. The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory-secretory products. Mol. Biochem. Parasitol. 160, 8–21 (2008).

    Article  CAS  Google Scholar 

  41. Moreno, Y. & Geary, T.G. Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products. PLoS Negl. Trop. Dis. 2, e326 (2008).

    Article  Google Scholar 

  42. Bennuru, S. et al. Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling. PLoS Negl. Trop. Dis. 3, e3410 (2009).

    Article  Google Scholar 

  43. Robinson, M.W. et al. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Mol. Cell. Proteomics 8, 1891–1907 (2009).

    Article  CAS  Google Scholar 

  44. Yatsuda, A.P. et al. Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. J. Biol. Chem. 278, 16941–16951 (2003).

    Article  CAS  Google Scholar 

  45. Hewitson, J.P. et al. Secretion of protective antigens by tissue-stage nematode larvae revealed by proteomic analysis and vaccination-induced sterile immunity. PLoS Pathog. 9, e1003492 (2013).

    Article  CAS  Google Scholar 

  46. Wang, T. et al. Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases. PLoS Negl. Trop. Dis. 7, e2467 (2013).

    Article  Google Scholar 

  47. Baermann, G. Eine einfache methode zur auffindung von Ankylostomum (nematoden) larven in erdproben. Geneesk. Tijdschr. Ned-Indië 57, 131–137 (1917).

    Google Scholar 

  48. van Bezooijen, J. Methods and Techniques for Nematology (revised edition) (Department of Nematology, Agricultural University, Wageningen, Holland 2006).

  49. Holland, M.J., Harcus, Y.M., Riches, P.L. & Maizels, R.M. Proteins secreted by the parasitic nematode Nippostrongylus brasiliensis act as adjuvants for Th2 responses. Eur. J. Immunol. 30, 1977–1987 (2000).

    Article  CAS  Google Scholar 

  50. Adams, J.H., Monroy, F.G., East, J. & Dobson, C. Surface and excretory/secretory antigens of Nematospiroides dubius. Immuno. Cell Biol. 65, 393–397 (1987).

    Article  CAS  Google Scholar 

  51. Hewitson, J.P. et al. Heligmosomoides polygyrus elicits a dominant nonprotective antibody response directed against restricted glycan and peptide epitopes. J. Immunol. 187, 4764–4777 (2011).

    Article  CAS  Google Scholar 

  52. Stockinger, B. et al. B cells solicit their own help from T cells. J. Exp. Med. 183, 891–899 (1996).

    Article  CAS  Google Scholar 

  53. Cantacessi, C. et al. The transcriptome of Trichuris suis – first molecular insights into a parasite with curative properties for key immune diseases in humans. PLoS ONE 6, e23590 (2011).

    Article  CAS  Google Scholar 

  54. Massacand, J.C. et al. Helminth products bypass the need for TSLP in TH2 immune responses by directly modulating dendritic cell function. Proc. Natl. Acad. Sci. USA 106, 13968–13973 (2009).

    Article  CAS  Google Scholar 

  55. Klaver, E.J. et al. Trichuris suis–induced modulation of human dendritic cell function is glycan-mediated. Int. J. Parasitol. 43, 191–200 (2013).

    Article  CAS  Google Scholar 

  56. Twohy, C.W., Duran, A.P. & Munson, T.E. Endotoxin contamination of parenteral drugs and radiopharmaceuticals as determined by the Limulus amebocyte lysate method. J. Parenter. Sci. Technol. 38, 190–201 (1984).

    CAS  PubMed  Google Scholar 

  57. Ministry of Agriculture, Fisheries and Food. Manual of Veterinary Parasitological Laboratory Techniques (Reference Book 418), 3rd edn., (Publisher: Her Majesty's Stationery Officer (HMSO), London 1986).

  58. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  59. Inaba, K.M. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocytes-macrophage colony-stimulating factors. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  Google Scholar 

  60. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    Article  CAS  Google Scholar 

  61. BD Biosciences. Immunofluorescent Staining of Mouse and Rat Leukocytes http://www.bdbiosciences.com/ca/resources/protocols/mouse_rat_leukocytes.jsp.

Download references

Acknowledgements

R.M.V. is a recipient of a Studentship (2013–2014) from the Research Institute of the McGill University Health Centre. The work in our laboratories is supported by funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) to M.S.; the Canadian Institutes of Health Research (CIHR) (MOP 94589) to A.J.; NSERC and Canada Research Chairs grants to T.G.G.; and CIHR (MOP 81169 and MOP 130369) to M.M.S. The Centre for Host-Parasite Interactions is supported by funding from the Fonds de Québec de recherche sur la nature et les technologies.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to this manuscript. R.M.V. wrote the first draft and provided examples of original data for the ANTICIPATED RESULTS section. M.S. contributed to the development of the procedures for the adult worm collection and ES production, the generation of BMDCs and the evaluation of ES products on DC function. M.T. contributed to the development of the procedures for maintaining the Hpb parasite, for egg collection to obtain larvae for infection and to obtain ES products, and for collection of adult worms. A.J. and T.G.G. provided expert advice on the procedures and contributed significantly to finalizing the submitted manuscript. A.J., T.G.G. and M.M.S. jointly conceived the idea for the manuscript. M.M.S. provided supervision to R.M.V. in preparing the draft and wrote and revised the final manuscript.

Corresponding author

Correspondence to Mary M Stevenson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Protein production by Hpb adult worm in culture. (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valanparambil, R., Segura, M., Tam, M. et al. Production and analysis of immunomodulatory excretory-secretory products from the mouse gastrointestinal nematode Heligmosomoides polygyrus bakeri. Nat Protoc 9, 2740–2754 (2014). https://doi.org/10.1038/nprot.2014.184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.184

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing