Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages

Abstract

Advances in electron cryotomography have provided new opportunities to visualize the internal 3D structures of a bacterium. An electron microscope equipped with Zernike phase-contrast optics produces images with markedly increased contrast compared with images obtained by conventional electron microscopy. Here we describe a protocol to apply Zernike phase plate technology for acquiring electron tomographic tilt series of cyanophage-infected cyanobacterial cells embedded in ice, without staining or chemical fixation. We detail the procedures for aligning and assessing phase plates for data collection, and methods for obtaining 3D structures of cyanophage assembly intermediates in the host by subtomogram alignment, classification and averaging. Acquiring three or four tomographic tilt series takes 12 h on a JEM2200FS electron microscope. We expect this time requirement to decrease substantially as the technique matures. The time required for annotation and subtomogram averaging varies widely depending on the project goals and data volume.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ZPC electron microscope setup and photographs of the phase plate airlock, blade, disc and phase plate hole.
Figure 2: Zernike phase plate on-plane condition.
Figure 3: Phase plate setup and microscope alignment for ZPC cryoET imaging.
Figure 4: Contrast improvement by Zernike phase plate using Syn5-infected WH8109 cells as an example specimen.
Figure 5: Comparison of ZPC images of WH8109 cells taken with good and charging phase plates, and from centered and off-center phase plates.
Figure 6: ZPC cryoET of a Syn5-infected WH8109 cell.
Figure 7: Flowchart of subtomogram classification and alignment.

Similar content being viewed by others

References

  1. Barcena, M. & Koster, A.J. Electron tomography in life science. Semin. Cell Dev. Biol. 20, 920–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guerrero-Ferreira, R.C. & Wright, E.R. Cryo-electron tomography of bacterial viruses. Virology 435, 179–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Thon, F. Electron Microscopy in Material Sciences 570–625 (Academic Press, 1971).

  4. Danev, R. & Nagayama, K. Single particle analysis based on Zernike phase-contrast transmission electron microscopy. J. Struct. Biol. 161, 211–218 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Danev, R., Glaeser, R.M. & Nagayama, K. Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109, 312–325 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Danev, R., Kanamaru, S., Marko, M. & Nagayama, K. Zernike phase contrast cryo-electron tomography. J. Struct. Biol. 171, 174–181 (2010).

    Article  PubMed  Google Scholar 

  7. Danev, R. & Nagayama, K. Optimizing the phase shift and the cut-on periodicity of phase plates for TEM. Ultramicroscopy 111, 1305–1315 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Marko, M., Leith, A., Hsieh, C. & Danev, R. Retrofit implementation of Zernike phase plate imaging for cryo-TEM. J. Struct. Biol. 174, 400–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamaguchi, M., Danev, R., Nishiyama, K., Sugawara, K. & Nagayama, K. Zernike phase contrast electron microscopy of ice-embedded influenza A virus. J. Struct. Biol. 162, 271–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Guerrero-Ferreira, R.C. & Wright, E.R. Zernike phase contrast cryo-electron tomography of whole bacterial cells. J. Struct. Biol. 185, 129–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Fukuda, Y., Fukazawa, Y., Danev, R., Shigemoto, R. & Nagayama, K. Tuning of the Zernike phase-plate for visualization of detailed ultrastructure in complex biological specimens. J. Struct. Biol. 168, 476–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Murata, K. et al. Zernike phase contrast cryo-electron microscopy and tomography for structure determination at nanometer and subnanometer resolutions. Structure 18, 903–912 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai, W. et al. Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 502, 707–710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barton, B. et al. In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate. Ultramicroscopy 111, 1696–1705 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Gamm, B., Schultheiss, K., Gerthsen, D. & Schroder, R.R. Effect of a physical phase plate on contrast transfer in an aberration-corrected transmission electron microscope. Ultramicroscopy 108, 878–884 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Majorovits, E. et al. Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 107, 213–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Fuller, N.J. et al. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the red sea. Appl. Environ. Microbiol. 69, 2430–2443 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rocap, G., Distel, D.L., Waterbury, J.B. & Chisholm, S.W. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68, 1180–1191 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pope, W.H. et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a 'horned' bacteriophage of marine Synechococcus. J. Mol. Biol. 368, 966–981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visulasualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Raytcheva, D.A., Haase-Pettingell, C., Piret, J.M. & King, J.A. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J. Virol. 85, 2406–2415 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Danev, R. & Nagayama, K. Phase plates for transmission electron microscopy. Methods Enzymol. 481, 343–369 (2010).

    Article  PubMed  Google Scholar 

  26. Taylor, K.A. & Glaeser, R.M. Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J. Struct. Biol. 163, 214–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marko, M., Meng, X., Hsieh, C., Roussie, J. & Striemer, C. Methods for testing Zernike phase plates and a report on silicon-based phase plates with reduced charging and improved ageing characteristics. J. Struct. Biol. 184, 237–244 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Nagayama, K. Another 60 years in electron microscopy: development of phase-plate electron microscopy and biological applications. J. Electron Microsc. 60, S43–S62 (2011).

    CAS  Google Scholar 

  29. Fukuda, Y. & Nagayama, K. Zernike phase contrast cryo-electron tomography of whole mounted frozen cells. J. Struct. Biol. 177, 484–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Schmid, M.F. Single-particle electron cryotomography (cryoET). Adv. Protein Chem. Struct. Biol. 82, 37–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Schmid, M.F. & Booth, C.R. Methods for aligning and for averaging 3D volumes with missing data. J. Struct. Biol. 161, 243–248 (2008).

    Article  PubMed  Google Scholar 

  32. Schmid, M.F. et al. A tail-like assembly at the portal vertex in intact herpes simplex type-1 virions. PLoS Pathog. 8, e1002961 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang, J.T., Schmid, M.F., Rixon, F.J. & Chiu, W. Electron cryotomography reveals the portal in the herpesvirus capsid. J. Virol. 81, 2065–2068 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Rochat, R.H. et al. Seeing the portal in herpes simplex virus type 1 B capsids. J. Virol. 85, 1871–1874 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, D.H. et al. Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proc. Natl. Acad. Sci. USA 108, 1355–1360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hosogi, N., Shigematsu, H., Terashima, H., Homma, M. & Nagayama, K. Zernike phase contrast cryo-electron tomography of sodium-driven flagellar hook-basal bodies from Vibrio alginolyticus. J. Struct. Biol. 173, 67–76 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been supported by US National Institutes of Health (NIH) grants (P41GM103832 and R01GM080139) and the Robert Welch Foundation (Q1242). We thank D. Raytcheva, C. Haase-Pettingell and J.A. King for the supplies of Syn5 phage and for much assistance in preparing the samples for the experiments; K. Nagayama for suppling the phase plates; J. Flanagan for computational software; R.H. Rochat for photographs and part of the illustration in Figure 1; X. Liu for programs for cut-on frequency correction; and M. Kawasaki for many helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.D. carried out the Synechococcus WH8109 cell culture and Syn5 infection experiments, collected all ZPC cryoET tilt series and performed the data processing and subtomogram alignment. W.D. and C.F. prepared all the grids for ZPC cryoET imaging. C.F. and H.A.K. established the ZPC illumination configuration and the airlock system for phase plate disc exchange. S.J.L. and M.F.S. developed subtomogram processing programs. W.D., M.F.S. and W.C. performed the data analysis and interpretation. All authors contributed to the preparation of this paper.

Corresponding author

Correspondence to Wah Chiu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 ZPC cryoEM images of a Syn5-infected WH8109 cell taken from good and charging phase plates.

All four images are taken under the same conditions at 25,000x magnification and 1.3 e-/Å2 exposure. (a) Image from a good phase plate. (b–d) Images from phase plates suffering from various amounts of charging. Scale bar: 200 nm.

Supplementary Figure 2 Screenshot of PPCont program for phase plate mapping and evaluation.

The good phase plates are reported in green, the possibly usable ones in orange, and the charging or otherwise unusable ones in pink.

Supplementary Figure 3 Diagram of low-dose setup for ZPC cryoET and the relative positions of the phase plate, Photo mode, and Focus mode in Search view.

Supplementary Figure 4 Flowchart of symmetry axis search procedure.

A symmetry axis search algorithm is used to determine if individual phage progeny particles have icosahedral symmetry and to align the particles to their icosahedral symmetry axes if symmetry is identified (Step 45).

Supplementary information

Supplementary Figure 1

ZPC cryoEM images of a Syn5-infected WH8109 cell taken from good and charging phase plates. (PDF 9824 kb)

Supplementary Figure 2

Screenshot of PPCont program for phase plate mapping and evaluation. (PDF 2600 kb)

Supplementary Figure 3

Diagram of low-dose setup for ZPC cryoET and the relative positions of the phase plate, Photo mode, and Focus mode in Search view. (PDF 1880 kb)

Supplementary Figure 4

Flowchart of symmetry axis search procedure. (PDF 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Fu, C., Khant, H. et al. Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages. Nat Protoc 9, 2630–2642 (2014). https://doi.org/10.1038/nprot.2014.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.176

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology