Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using injectoporation to deliver genes to mechanosensory hair cells

Abstract

Mechanosensation, the transduction of mechanical force into electrochemical signals, allows organisms to detect touch and sound, to register movement and gravity, and to sense changes in cell volume and shape. The hair cells of the mammalian inner ear are the mechanosensors for the detection of sound and head movement. The analysis of gene function in hair cells has been hampered by the lack of an efficient gene transfer method. Here we describe a method termed injectoporation that combines tissue microinjection with electroporation to express cDNAs and shRNAs in mouse cochlear hair cells. Injectoporation allows for gene transfer into dozens of hair cells, and it is compatible with the analysis of hair cell function using imaging approaches and electrophysiology. Tissue dissection and injectoporation can be carried out within a few hours, and the tissue can be cultured for days for subsequent functional analyses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue dissection.
Figure 2: Injectoporation setup.
Figure 3: Diagram of the microinjection procedure and evaluation of the injectoporation efficiency.
Figure 4: Histological analysis of injectoporated hair cells.
Figure 5: Physiological analyses of mechanically activated Ca2+ responses and membrane currents.
Figure 6: Analysis of CDH23 functions in OHCs.

Similar content being viewed by others

References

  1. Abraira, V.E. & Ginty, D.D. The sensory neurons of touch. Neuron 79, 618–639 (2013).

    Article  CAS  Google Scholar 

  2. Proske, U. & Gandevia, S.C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012).

    Article  CAS  Google Scholar 

  3. Gillespie, P.G. & Muller, U. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139, 33–44 (2009).

    Article  CAS  Google Scholar 

  4. Schwander, M., Kachar, B. & Muller, U. Review series: the cell biology of hearing. J. Cell Biol. 190, 9–20 (2010).

    Article  CAS  Google Scholar 

  5. Dror, A.A. & Avraham, K.B. Hearing impairment: a panoply of genes and functions. Neuron 68, 293–308 (2010).

    Article  CAS  Google Scholar 

  6. Richardson, G.P., de Monvel, J.B. & Petit, C. How the genetics of deafness illuminates auditory physiology. Ann. Rev. Physiol. 73, 311–334 (2011).

    Article  CAS  Google Scholar 

  7. Shearer, A.E. & Smith, R.J. Genetics: advances in genetic testing for deafness. Curr. Opin. Pediatr. 24, 679–686 (2012).

    Article  Google Scholar 

  8. Xiong, W. et al. TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 151, 1283–1295 (2012).

    Article  CAS  Google Scholar 

  9. Bork, J.M. et al. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am. J. Hum. Genet. 68, 26–37 (2001).

    Article  CAS  Google Scholar 

  10. Di Palma, F. et al. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat. Genet. 27, 103–107 (2001).

    Article  CAS  Google Scholar 

  11. Bolz, H. et al. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat. Genet. 27, 108–112 (2001).

    Article  CAS  Google Scholar 

  12. Wada, T. et al. A point mutation in a cadherin gene, Cdh23, causes deafness in a novel mutant, Waltzer mouse niigata. Biochem. Biopyhs. Res. Commun. 283, 113–117 (2001).

    Article  CAS  Google Scholar 

  13. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  Google Scholar 

  14. Kowalik, L. & Hudspeth, A.J. A search for factors specifying tonotopy implicates DNER in hair-cell development in the chick's cochlea. Dev. Biol. 354, 221–231 (2011).

    Article  CAS  Google Scholar 

  15. Senthilan, P.R. et al. Drosophila auditory organ genes and genetic hearing defects. Cell 150, 1042–1054 (2012).

    Article  CAS  Google Scholar 

  16. Shin, J.B. et al. Molecular architecture of the chick vestibular hair bundle. Nat. Neurosci. 16, 365–374 (2013).

    Article  CAS  Google Scholar 

  17. Kralj, J.M., Douglass, A.D., Hochbaum, D.R., Maclaurin, D. & Cohen, A.E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95 (2012).

    Article  CAS  Google Scholar 

  18. Fan, X., Jin, W.Y., Lu, J., Wang, J. & Wang, Y.T. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat. Neurosci. 17, 471–480 (2014).

    Article  CAS  Google Scholar 

  19. Munde, P.B., Khandekar, S.P., Dive, A.M. & Sharma, A. Pathophysiology of merkel cell. J. Oral Maxillofac. Pathol. 17, 408–412 (2013).

    Article  Google Scholar 

  20. Holt, J.R. Viral-mediated gene transfer to study the molecular physiology of the mammalian inner ear. Audiol. Neurootol. 7, 157–160 (2002).

    Article  CAS  Google Scholar 

  21. Holt, J.R. et al. Functional expression of exogenous proteins in mammalian sensory hair cells infected with adenoviral vectors. J. Neurophys. 81, 1881–1888 (1999).

    Article  CAS  Google Scholar 

  22. Husseman, J. & Raphael, Y. Gene therapy in the inner ear using adenovirus vectors. Adv. Otorhinolaryngol. 66, 37–51 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bedrosian, J.C. et al. In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. Mol. Ther. 14, 328–335 (2006).

    Article  CAS  Google Scholar 

  24. Konishi, M., Kawamoto, K., Izumikawa, M., Kuriyama, H. & Yamashita, T. Gene transfer into guinea pig cochlea using adeno-associated virus vectors. J. Gene Med. 10, 610–618 (2008).

    Article  CAS  Google Scholar 

  25. Luebke, A.E., Foster, P.K., Muller, C.D. & Peel, A.L. Cochlear function and transgene expression in the guinea pig cochlea, using adenovirus- and adeno-associated virus-directed gene transfer. Hum. Gene Ther. 12, 773–781 (2001).

    Article  CAS  Google Scholar 

  26. Akil, O. et al. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 75, 283–293 (2012).

    Article  CAS  Google Scholar 

  27. Kawashima, Y. et al. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J. Clin. Invest. 121, 4796–4809 (2011).

    Article  CAS  Google Scholar 

  28. Pan, B. et al. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79, 504–515 (2013).

    Article  CAS  Google Scholar 

  29. Selot, R.S., Hareendran, S. & Jayandharan, G.R. Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations. Curr. Pharm. Biotechnol. 14, 1072–1082 (2014).

    Article  Google Scholar 

  30. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    Article  CAS  Google Scholar 

  31. Belyantseva, I.A. Helios Gene Gun-mediated transfection of the inner ear sensory epithelium. Methods Mol. Biol. 493, 103–123 (2009).

    Article  CAS  Google Scholar 

  32. Zhao, H., Avenarius, M.R. & Gillespie, P.G. Improved biolistic transfection of hair cells. PloS ONE 7, e46765 (2012).

    Article  CAS  Google Scholar 

  33. Woods, C., Montcouquiol, M. & Kelley, M.W. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat. Neurosci. 7, 1310–1318 (2004).

    Article  CAS  Google Scholar 

  34. Zheng, J.L. & Gao, W.Q. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat. Neurosci. 3, 580–586 (2000).

    Article  CAS  Google Scholar 

  35. Brigande, J.V., Gubbels, S.P., Woessner, D.W., Jungwirth, J.J. & Bresee, C.S. Electroporation-mediated gene transfer to the developing mouse inner ear. Methods Mol. Biol. 493, 125–139 (2009).

    Article  CAS  Google Scholar 

  36. Gulley, R.L. & Reese, T.S. Intercellular junctions in the reticular lamina of the organ of Corti. J. Neurocytol. 5, 479–507 (1976).

    Article  CAS  Google Scholar 

  37. Nadol, J.B. Jr., Mulroy, M.J., Goodenough, D.A. & Weiss, T.F. Tight and gap junctions in a vertebrate inner ear. Am. J. Anat. 147, 281–301 (1976).

    Article  Google Scholar 

  38. Nunes, F.D. et al. Distinct subdomain organization and molecular composition of a tight junction with adherens junction features. J. Cell Sci. 119, 4819–4827 (2006).

    Article  CAS  Google Scholar 

  39. Li, H. et al. Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear. J. Comp. Neurol. 468, 125–134 (2004).

    Article  CAS  Google Scholar 

  40. Loomis, P.A. et al. Espin cross-links cause the elongation of microvillus-type parallel actin bundles in vivo. J. Cell Biol. 163, 1045–1055 (2003).

    Article  CAS  Google Scholar 

  41. Zheng, L. et al. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102, 377–385 (2000).

    Article  CAS  Google Scholar 

  42. Grillet, N. et al. Harmonin mutations cause mechanotransduction defects in cochlear hair cells. Neuron 62, 375–387 (2009).

    Article  CAS  Google Scholar 

  43. Weil, D. et al. Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum. Mol. Genet. 12, 463–471 (2003).

    Article  CAS  Google Scholar 

  44. Lefevre, G. et al. A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the hair bundle in its cohesion, orientation and differential growth. Development 135, 1427–1437 (2008).

    Article  CAS  Google Scholar 

  45. Corey, D.P. & Hudspeth, A.J. Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281, 675–677 (1979).

    Article  CAS  Google Scholar 

  46. Frolenkov, G.I. Ion imaging in the cochlear hair cells. Methods Mol. Biol. 493, 381–399 (2009).

    Article  CAS  Google Scholar 

  47. Beurg, M., Fettiplace, R., Nam, J.H. & Ricci, A.J. Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat. Neurosci. 12, 553–558 (2009).

    Article  CAS  Google Scholar 

  48. Farris, H.E., LeBlanc, C.L., Goswami, J. & Ricci, A.J. Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J. Physiol. 558, 769–792 (2004).

    Article  CAS  Google Scholar 

  49. Glowatzki, E., Ruppersberg, J.P., Zenner, H.P. & Rusch, A. Mechanically and ATP-induced currents of mouse outer hair cells are independent and differentially blocked by d-tubocurarine. Neuropharmacology 36, 1269–1275 (1997).

    Article  CAS  Google Scholar 

  50. Kimitsuki, T. & Ohmori, H. Dihydrostreptomycin modifies adaptation and blocks the mechano-electric transducer in chick cochlear hair cells. Brain Res. 624, 143–150 (1993).

    Article  CAS  Google Scholar 

  51. Jorgensen, F. & Ohmori, H. Amiloride blocks the mechano-electrical transduction channel of hair cells of the chick. J. Physiol. 403, 577–588 (1988).

    Article  CAS  Google Scholar 

  52. Lagziel, A. et al. Spatiotemporal pattern and isoforms of cadherin 23 in wild type and waltzer mice during inner ear hair cell development. Dev. Biol. 280, 295–306 (2005).

    Article  CAS  Google Scholar 

  53. Michel, V. et al. Cadherin 23 is a component of the transient lateral links in the developing hair bundles of cochlear sensory cells. Dev. Biol. 280, 281–294 (2005).

    Article  CAS  Google Scholar 

  54. Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 950–955 (2004).

    Article  CAS  Google Scholar 

  55. Kazmierczak, P. et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449, 87–91 (2007).

    Article  CAS  Google Scholar 

  56. Pickles, J.O., Comis, S.D. & Osborne, M.P. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hearing Res. 15, 103–112 (1984).

    Article  CAS  Google Scholar 

  57. Assad, J.A., Shepherd, G.M. & Corey, D.P. Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7, 985–994 (1991).

    Article  CAS  Google Scholar 

  58. Palmer, A.E. & Tsien, R.Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat. Protoc. 1, 1057–1065 (2006).

    Article  CAS  Google Scholar 

  59. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Google Scholar 

  60. Cummins, T.R., Rush, A.M., Estacion, M., Dib-Hajj, S.D. & Waxman, S.G. Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat. Protoc. 4, 1103–1112 (2009).

    Article  CAS  Google Scholar 

  61. Hao, J. & Delmas, P. Recording of mechanosensitive currents using piezoelectrically driven mechanostimulator. Nat. Protoc. 6, 979–990 (2011).

    Article  CAS  Google Scholar 

  62. Caberlotto, E. et al. Usher type 1G protein sans is a critical component of the tip-link complex, a structure controlling actin polymerization in stereocilia. Proc. Natl. Acad. Sci. USA 108, 5825–5830 (2011).

    Article  CAS  Google Scholar 

  63. Grati, M. & Kachar, B. Myosin VIIa and sans localization at stereocilia upper tip-link density implicates these Usher syndrome proteins in mechanotransduction. Proc. Natl. Acad. Sci. USA 108, 11476–11481 (2011).

    Article  CAS  Google Scholar 

  64. Waguespack, J., Salles, F.T., Kachar, B. & Ricci, A.J. Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells. J. Neurosci. 27, 13890–13902 (2007).

    Article  CAS  Google Scholar 

  65. Beurg, M., Evans, M.G., Hackney, C.M. & Fettiplace, R. A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells. J. Neurosci. 26, 10992–11000 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bartles (Northwestern University) for espin-EGFP. This research was supported by funding from the US National Institutes of Health (NIH) (to U.M., DC005965 and DC007704), the Dorris Neuroscience Center (to U.M.), the Deutsche Forschungsgemeinschaft (to T.W.) and the Bundy foundation (to W.X.).

Author information

Authors and Affiliations

Authors

Contributions

W.X., T.W. and U.M. developed protocols and designed the devices; W.X., T.W., L.Y. and N.G. performed experiments; and W.X. and U.M. analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Wei Xiong or Ulrich Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Gene transfer into supporting cells by injectoporation.

A diagram of a cross section through the organ of Corti is shown as well as the EGFP fluorescence signal in the indicated cell types. Scale bars: 10 μm.

Supplementary information

Supplementary Figure 1

Gene transfer into supporting cells by injectoporation. (PDF 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Wagner, T., Yan, L. et al. Using injectoporation to deliver genes to mechanosensory hair cells. Nat Protoc 9, 2438–2449 (2014). https://doi.org/10.1038/nprot.2014.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.168

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research