Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server

Abstract

Metals have vital roles in both the mechanism and architecture of biological macromolecules. Yet structures of metal-containing macromolecules in which metals are misidentified and/or suboptimally modeled are abundant in the Protein Data Bank (PDB). This shows the need for a diagnostic tool to identify and correct such modeling problems with metal-binding environments. The CheckMyMetal (CMM) web server (http://csgid.org/csgid/metal_sites/) is a sophisticated, user-friendly web-based method to evaluate metal-binding sites in macromolecular structures using parameters derived from 7,350 metal-binding sites observed in a benchmark data set of 2,304 high-resolution crystal structures. The protocol outlines how the CMM server can be used to detect geometric and other irregularities in the structures of metal-binding sites, as well as how it can alert researchers to potential errors in metal assignment. The protocol also gives practical guidelines for correcting problematic sites by modifying the metal-binding environment and/or redefining metal identity in the PDB file. Several examples where this has led to meaningful results are described in the ANTICIPATED RESULTS section. CMM was designed for a broad audience—biomedical researchers studying metal-containing proteins and nucleic acids—but it is equally well suited for structural biologists validating new structures during modeling or refinement. The CMM server takes the coordinates of a metal-containing macromolecule structure in the PDB format as input and responds within a few seconds for a typical protein structure with 2–5 metal sites and a few hundred amino acids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quality of metal-binding sites grouped by year for structures in the PDB, as determined by CMM.
Figure 2
Figure 3: CheckMyMetal (CMM) server: screenshot of the various components of the results display interface.
Figure 4: Examples of problematic metal-binding sites in crystal structures, as detected by CMM.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Harding, M.M., Nowicki, M.W. & Walkinshaw, M.D. Metals in protein structures: a review of their principal features. Crystallogr. Rev. 16, 247–302 (2010).

    Article  CAS  Google Scholar 

  2. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  Google Scholar 

  3. Pozharski, E., Weichenberger, C.X. & Rupp, B. Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. Acta Crystallogr. D 69, 150–167 (2013).

    Article  CAS  Google Scholar 

  4. Chruszcz, M., Domagalski, M., Osinski, T., Wlodawer, A. & Minor, W. Unmet challenges of structural genomics. Curr. Opin. Struct. Biol. 20, 587–597 (2010).

    Article  CAS  Google Scholar 

  5. Zheng, H., Chruszcz, M., Lasota, P., Lebioda, L. & Minor, W. Data mining of metal ion environments present in protein structures. J. Inorg. Biochem. 102, 1765–1776 (2008).

    Article  CAS  Google Scholar 

  6. Branden, C. & Jones, T. Between objectivity and subjectivity. Nature 343, 687–689 (1990).

    Article  Google Scholar 

  7. Adams, P.D. et al. Advances, interactions, and future developments in the CNS, Phenix, and Rosetta structural biology software systems. Annu. Rev. Biophys. 42, 265–287 (2013).

    Article  CAS  Google Scholar 

  8. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D 62, 859–866 (2006).

    Article  Google Scholar 

  9. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  10. Abriata, L.A. Investigation of non-corrin cobalt(II)-containing sites in protein structures of the Protein Data Bank. Acta Crystallogr. B 69, 176–183 (2013).

    Article  CAS  Google Scholar 

  11. Dauter, Z., Weiss, M.S., Einspahr, H. & Baker, E.N. Expectation bias and information content. Acta Crystallogr. F 69, 83 (2013).

    Article  CAS  Google Scholar 

  12. Weichenberger, C.X., Pozharski, E. & Rupp, B. Visualizing ligand molecules in Twilight electron density. Acta Crystallogr. F 69, 195–200 (2013).

    Article  CAS  Google Scholar 

  13. Wlodawer, A., Minor, W., Dauter, Z. & Jaskolski, M. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J. 275, 1–21 (2008).

    Article  CAS  Google Scholar 

  14. Nayal, M. & Di Cera, E. Valence screening of water in protein crystals reveals potential Na+ binding sites. J. Mol. Biol. 256, 228–234 (1996).

    Article  CAS  Google Scholar 

  15. Nabuurs, S.B., Spronk, C.A., Vuister, G.W. & Vriend, G. Traditional biomolecular structure determination by NMR spectroscopy allows for major errors. PLoS Comput. Biol. 2, e9 (2006).

    Article  Google Scholar 

  16. Hsin, K., Sheng, Y., Harding, M.M., Taylor, P. & Walkinshaw, M.D. MESPEUS: a database of the geometry of metal sites in proteins. J. Appl. Crystallogr. 41, 963–968 (2008).

    Article  CAS  Google Scholar 

  17. Abriata, L.A. Analysis of copper-ligand bond lengths in X-ray structures of different types of copper sites in proteins. Acta Crystallogr. D 68, 1223–1231 (2012).

    Article  CAS  Google Scholar 

  18. Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    Article  CAS  Google Scholar 

  19. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  20. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  21. Bergerhoff, G. & Brandenburg, K. in International Tables for Crystallography (eds. Wilson, J.C. & Prince, E.) 778–789 (John Wiley & Sons, 2006).

  22. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK—a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  23. Vaguine, A.A., Richelle, J. & Wodak, S.J. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. D 55, 191–205 (1999).

    Article  CAS  Google Scholar 

  24. Ascone, I. & Strange, R. Biological X-ray absorption spectroscopy and metalloproteomics. J. Synchrotron Radiat. 16, 413–421 (2009).

    Article  CAS  Google Scholar 

  25. Garcia, J.S., Magalhaes, C.S. & Arruda, M.A. Trends in metal-binding and metalloprotein analysis. Talanta 69, 1–15 (2006).

    Article  CAS  Google Scholar 

  26. Müller, P., Köpke, S. & Sheldrick, G.M. Is the bond-valence method able to identify metal atoms in protein structures? Acta Crystallogr. D 59, 32–37 (2003).

    Article  Google Scholar 

  27. Tylichova, M. et al. Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J. Mol. Biol. 396, 870–882 (2010).

    Article  CAS  Google Scholar 

  28. Seff, A.L., Pilbak, S., Silaghi-Dumitrescu, I. & Poppe, L. Computational investigation of the histidine ammonia-lyase reaction: a modified loop conformation and the role of the zinc(II) ion. J. Mol. Model. 17, 1551–1563 (2011).

    Article  CAS  Google Scholar 

  29. Srikanth, R., Mendoza, V.L., Bridgewater, J.D., Zhang, G. & Vachet, R.W. Copper binding to β-2-microglobulin and its pre-amyloid oligomers. Biochemistry 48, 9871–9881 (2009).

    Article  CAS  Google Scholar 

  30. Cooper, D.R., Porebski, P.J., Chruszcz, M. & Minor, W. X-ray crystallography: assessment and validation of protein-small molecule complexes for drug discovery. Exp. Opin. Drug Discov. 6, 771–782 (2011).

    Article  CAS  Google Scholar 

  31. Pietrzyk, A.J. et al. High-resolution structure of Bombyx mori lipoprotein 7: crystallographic determination of the identity of the protein and its potential role in detoxification. Acta Crystallogr. D 68, 1140–1151 (2012).

    Article  CAS  Google Scholar 

  32. Brown, I.D. Recent developments in the methods and applications of the bond valence model. Chem. Rev. 109, 6858–6919 (2009).

    Article  CAS  Google Scholar 

  33. Hanson, R.M. Jmol—a paradigm shift in crystallographic visualization. J. Appl. Crystallogr. 43, 1250–1260 (2010).

    Article  CAS  Google Scholar 

  34. Allen, F.H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. B 58, 380–388 (2002).

    Article  Google Scholar 

  35. Brylinski, M. & Skolnick, J. FINDSITE-metal: integrating evolutionary information and machine learning for structure-based metal-binding site prediction at the proteome level. Proteins 79, 735–751 (2011).

    Article  CAS  Google Scholar 

  36. Sodhi, J.S. et al. Predicting metal-binding site residues in low-resolution structural models. J. Mol. Biol. 342, 307–320 (2004).

    Article  CAS  Google Scholar 

  37. Cai, C.Z., Han, L.Y., Ji, Z.L., Chen, X. & Chen, Y.Z. SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 31, 3692–3697 (2003).

    Article  CAS  Google Scholar 

  38. Levy, R., Edelman, M. & Sobolev, V. Prediction of 3D metal binding sites from translated gene sequences based on remote-homology templates. Proteins 76, 365–374 (2009).

    Article  CAS  Google Scholar 

  39. Passerini, A., Lippi, M. & Frasconi, P. MetalDetector v2.0: predicting the geometry of metal binding sites from protein sequence. Nucleic Acids Res. 39, W288–W292 (2011).

    Article  CAS  Google Scholar 

  40. Hemavathi, K. et al. MIPS: metal interactions in protein structures. J. Appl. Crystallogr. 43, 196–199 (2010).

    Article  CAS  Google Scholar 

  41. Castagnetto, J.M. et al. MDB: the Metalloprotein Database and Browser at The Scripps Research Institute. Nucleic Acids Res. 30, 379–382 (2002).

    Article  CAS  Google Scholar 

  42. Andreini, C., Cavallaro, G., Lorenzini, S. & Rosato, A. MetalPDB: a database of metal sites in biological macromolecular structures. Nucleic Acids Res. 41, D312–D319 (2013).

    Article  CAS  Google Scholar 

  43. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G.L. & Thornton, J.M. Metal-MACiE: a database of metals involved in biological catalysis. Bioinformatics 25, 2088–2089 (2009).

    Article  CAS  Google Scholar 

  44. Degtyarenko, K.N., North, A.C. & Findlay, J.B. PROMISE: a database of bioinorganic motifs. Nucleic Acids Res. 27, 233–236 (1999).

    Article  CAS  Google Scholar 

  45. Laskowski, R.A. PDBsum new things. Nucleic Acids Res. 37, D355–D359 (2009).

    Article  CAS  Google Scholar 

  46. Golovin, A. & Henrick, K. MSDmotif: exploring protein sites and motifs. BMC Bioinformatics 9, 312 (2008).

    Article  Google Scholar 

  47. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  48. Brese, N.E. & O'Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. B 47, 192–197 (1991).

    Article  Google Scholar 

  49. Shields, G.P., Raithby, P.R., Allen, F.H. & Motherwell, W.D. The assignment and validation of metal oxidation states in the Cambridge Structural Database. Acta Crystallogr. B 56 (Part 3): 455–465 (2000).

    Article  Google Scholar 

  50. Carugo, O. & Djinovic Carugo, K. When X-rays modify the protein structure: radiation damage at work. Trends Biochem. Sci. 30, 213–219 (2005).

    Article  CAS  Google Scholar 

  51. Hersleth, H.P. & Andersson, K.K. How different oxidation states of crystalline myoglobin are influenced by X-rays. Biochim. Biophys. Acta 1814, 785–796 (2011).

    Article  CAS  Google Scholar 

  52. Katz, A., Glusker, J., Beebe, S. & Bock, C. Calcium ion coordination: A comparison with that of beryllium, magnesium, and zinc. J. Am. Chem. Soc. 118, 5752–5763 (1996).

    Article  CAS  Google Scholar 

  53. Harding, M.M. The architecture of metal coordination groups in proteins. Acta Crystallogr. D 60, 849–859 (2004).

    Article  Google Scholar 

  54. Kuppuraj, G., Dudev, M. & Lim, C. Factors governing metal-ligand distances and coordination geometries of metal complexes. J. Phys. Chem. B 113, 2952–2960 (2009).

    Article  CAS  Google Scholar 

  55. Bailey, S. The CCP4 suite—programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  56. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  Google Scholar 

  57. Lovell, S.C. et al. Structure validation by Cαgeometry: φ, ψ and Cβ deviation. Proteins 50, 437–450 (2003).

    Article  CAS  Google Scholar 

  58. Joosten, R.P., Joosten, K., Cohen, S.X., Vriend, G. & Perrakis, A. Automatic rebuilding and optimization of crystallographic structures in the Protein Data Bank. Bioinformatics 27, 3392–3398 (2011).

    Article  CAS  Google Scholar 

  59. Ye, Q., Crawley, S.W., Yang, Y., Cote, G.P. & Jia, Z. Crystal structure of the α-kinase domain of Dictyostelium myosin heavy chain kinase A. Sci. Signal. 3, ra17 (2010).

    Article  Google Scholar 

  60. Prasad, L., Leduc, Y., Hayakawa, K. & Delbaere, L.T. The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus. Acta Crystallogr. D 60, 256–259 (2004).

    Article  Google Scholar 

  61. Yoshiba, S. et al. Structural insights into the Thermus thermophilus ADP-ribose pyrophosphatase mechanism via crystal structures with the bound substrate and metal. J. Biol. Chem. 279, 37163–37174 (2004).

    Article  CAS  Google Scholar 

  62. Chitale, M., Hawkins, T., Park, C. & Kihara, D. ESG: extended similarity group method for automated protein function prediction. Bioinformatics 25, 1739–1745 (2009).

    Article  CAS  Google Scholar 

  63. Eustermann, S. et al. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18, 777–782 (2011).

    Article  CAS  Google Scholar 

  64. Kobashigawa, Y. et al. Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc. Natl. Acad. Sci. USA 108, 20579–20584 (2011).

    Article  CAS  Google Scholar 

  65. Loughlin, F.E. et al. Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nat. Struct. Mol. Biol. 19, 84–89 (2011).

    Article  Google Scholar 

  66. Veith, T. et al. Structural and functional analysis of the archaeal endonuclease Nob1. Nucleic Acids Res. 40, 3259–3274 (2011).

    Article  Google Scholar 

  67. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Federal funds from the National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Department of Health and Human Services, under contract nos. HHSN272200700058C and HHSN272201200026C. We thank M. Grabowski, K.M. Langner and M. Domagalski for the CSGID website framework containing the CMM server; J. Hou, I.G. Shabalin, I.A. Shumilin, M. Demas and A.A. Knapik for server testing; W.F. Anderson for valuable discussion; and M.D. Zimmerman and H.C. Chapman for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. designed, implemented, tested and maintained the CMM server; H.Z. developed, implemented and optimized the NEIGHBORHOOD database; M.D.C. and D.R.C. helped design the geometry assignment algorithm and server interface; D.R.C. implemented the first version of the Jmol applet; P.M. and G.M.S. introduced the CBVS and VECSUM methods, which were slightly modified for this study; H.Z., M.D.C., D.R.C., M.C., P.M., G.M.S. and W.M. wrote and approved the manuscript; and W.M. supervised the project.

Corresponding author

Correspondence to Wladek Minor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Valence distribution for the benchmark dataset.

Numbers of sample sizes and peak values for metal binding sites are indicated in parentheses. Valence values where the distribution heights were 50% or 10% of peak values were used as threshold values to define acceptable, borderline and outlier zones. Similar elements with same the expected valence are grouped (Supplementary Table 1). Poorly coordinated Na/K ions in the benchmark dataset resulted in a valence close to 0 and are considered as noise. These were removed prior to threshold estimation.

Supplementary Figure 2 Distribution of nVECSUM, gRMSD, vacancy and B-factor agreement for the benchmark dataset.

Metal binding sites with invalid parameter values are excluded from the statistics. Numbers of sample sizes and peak values for metal binding sites are indicated in parentheses. Values of parameters where the distributions had heights of 50% or 10% of the peak height are used as threshold values to define acceptable, borderline and outlier zones.

Supplementary Figure 3 One of the three modeled magnesiums (A901) in the catalytic center of the kinase domain of myosin heavy chain kinase A (PDB code: 3lkm).

Even though coordination by a phosphate of AMP often creates a favorable cation binding environment, this site has an improbable geometry (tetrahedral) for magnesium (which prefers octahedral geometry) (a). The ion is better interpreted as a water molecule (b). The other two modeled magnesiums (A902 and A903) in the same structure are re-refined as potassium ions. The re-refined site A902 is shown as an example in the main text in Fig. 4.

Supplementary information

Supplementary Figure 1

Valence distribution for the benchmark dataset. (PDF 566 kb)

Supplementary Figure 2

Distribution of nVECSUM, gRMSD, vacancy and B-factor agreement for the benchmark dataset. (PDF 455 kb)

Supplementary Figure 3

One of the three modeled magnesiums (A901) in the catalytic center of the kinase domain of myosin heavy chain kinase A (PDB code: 3lkm). (PDF 263 kb)

Supplementary Table 1

Comparison of CMM with other programs and services for metal binding site prediction or investigation. (PDF 221 kb)

Supplementary Table 2

Threshold values for CMM parameters. A parenthesis indicates that the nearest endpoint is excluded from the interval; a square bracket indicates that the endpoint is included in the interval. (PDF 306 kb)

Supplementary Table 3

Re-refinement statistics and geometry for the examples described in the main text. Clashscore, rotamer outliers, and the number of residues in the Ramachandran plot favored regions were calculated using MolProbity43. The Rfree set reported in the structure factor files available from the PDB were used for Rfree calculation. (PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Chordia, M., Cooper, D. et al. Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat Protoc 9, 156–170 (2014). https://doi.org/10.1038/nprot.2013.172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.172

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing