Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Using 5-deoxy-5-[18F]fluororibose to glycosylate peptides for positron emission tomography

Abstract

So far seven peptide-based 18F-radiopharmaceuticals for diagnostic applications with positron emission tomography (PET) have entered into clinical trials. Three candidates out of these seven are glycosylated peptides, which may be explained by the beneficial influence of glycosylation on in vivo pharmacokinetics of peptide tracers. This protocol describes the method for labeling peptides with 5-deoxy-5-[18F]fluororibose ([18F]FDR) as a prosthetic group. The synthesis of [18F]FDR is effected by a nucleophilic fluorination step by using dried Kryptofix 2.2.2-K2CO3-K18F complex and a subsequent HCl-catalyzed hydrolysis. The conjugation of [18F]FDR to the N-terminus aminooxy (-ONH2)-functionalized peptides is carried out in anilinium buffer at pH 4.6 and at room temperature (RT, 21–23 °C), with the concentration of peptide precursors being 0.3 mM. The procedure takes about 120 min and includes two cartridge isolation steps and two reversed-phase (RP) HPLC purification steps. The quaternary methyl amine (QMA) anion exchange cartridge and the hydrophilic-lipophilic balanced (HLB) cartridge are used for the isolation of 18F-fluoride and [18F]FDR-conjugated peptides, respectively. The first HPLC purification provides the 18F-fluorinated precursor of [18F]FDR and the second HPLC purification is to separate labeled peptides from their unlabeled precursors. The final product is formulated in PBS ready for injection, with a radiochemical purity of >98% and a radiochemical yield (RCY) of 27–37% starting from the end of bombardment (EOB). The carbohydrate nature of [18F]FDR and the operational convenience of this protocol should facilitate its general use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: HPLC and radio-TLC analyses of [18F]FDR-7.

Similar content being viewed by others

References

  1. Ametamey, S.M., Honer, M. & Schubiger, P.A. Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008).

    Article  CAS  Google Scholar 

  2. Tredwell, M. & Gouverneur, V. 18F-Labeling of arenes. Angew. Chem. Int. Ed. 51, 11426–11437 (2012).

    Article  CAS  Google Scholar 

  3. Holland, J.P., Cumming, P. & Vasdev, N. PET imaging of signal transduction pathways in cancer. J. Nucl. Med. 53, 1333–1336 (2012).

    Article  CAS  Google Scholar 

  4. Aalto, K. et al. Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer. Blood 118, 3725–3733 (2011).

    Article  CAS  Google Scholar 

  5. Koopmans, K.P. & Glaudemans, A.W.J.M. Rationale for the use of radiolabeled peptides in diagnosis and therapy. Eur. J. Nucl. Med. Mol. Imaging 39 (suppl. 1): S4–S10 (2012).

    Article  Google Scholar 

  6. Roivainen, A., Jalkanen, S. & Nanni, C. Gallium-labeled peptides for imaging of inflammation. Eur. J. Nucl. Med. Mol. Imaging 39 (suppl. 1): S68–S77 (2012).

    Article  Google Scholar 

  7. Kostikov, A.P. et al. Synthesis of [18F]SiFB: a prosthetic group for direct protein radiolabeling for application in positron emission tomography. Nat. Protoc. 7, 1956–1963 (2012).

    Article  CAS  Google Scholar 

  8. Wängler, C. et al. One-step 18F-labeling of peptides for positron emission tomography imaging using the SiFA methodology. Nat. Protoc. 7, 1946–1954 (2012).

    Article  Google Scholar 

  9. Gill, H.S. & Marik, J. Preparation of 18F-labeled peptides using the copper (I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition. Nat. Protoc. 6, 1718–1725 (2011).

    Article  CAS  Google Scholar 

  10. Saha, G.B. Basics of PET Imaging: Physics, Chemistry and Regulations 2nd edn. (Springer, 2010).

  11. Miller, P.W., Long, N.J., Vilar, R. & Gee, A.D. Synthesis of 11C, 18F, 15O, and 13C radiolabels for positron emission tomography. Angew. Chem. Int. Ed. 47, 8998–9033 (2008).

    Article  CAS  Google Scholar 

  12. Li, X.-G. et al. Translating the concept of peptide labeling with 5-deoxy-5-[18F]fluororibose into preclinical practice: 18F-labeling of Siglec-9 peptide for PET imaging of inflammation. Chem. Commun. 49, 3682–3684 (2013).

    Article  CAS  Google Scholar 

  13. Hermanson, G.T. Bioconjugate Techniques 2nd edn. (Elsevier, 2008).

  14. Zeng, Y., Ramya, T.N.C., Dirksen, A., Dawson, P.E. & Paulson, J.C. High-efficiency labeling of sialylated glycoproteins on living cells. Nat. Methods 6, 207–209 (2009).

    Article  CAS  Google Scholar 

  15. Rashidian, M., Song, J.M., Pricer, R.E. & Distefano, M.D. Chemoenzymatic reversible immobilization and labeling of proteins without prior purification. J. Am. Chem. Soc. 134, 8455–8467 (2012).

    Article  CAS  Google Scholar 

  16. Schottelius, M. et al. First 18F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. Clin. Cancer Res. 10, 3593–3606 (2004).

    Article  CAS  Google Scholar 

  17. O'Hagan, D. & Li, X.-G. Labeling method in preparation of 5-, 3- or 2-18F-deoxypentose conjugated with biological active molecules useful for PET imaging. British patent application no. 2491950 2011.

  18. Li, X.-G., Haaparanta, M. & Solin, O. Oxime formation for fluorine-18 labeling of peptides and proteins for positron emission tomography (PET) imaging: a review. J. Fluorine Chem. 143, 49–56 (2012).

    Article  CAS  Google Scholar 

  19. Li, X.-G., Dall'Angelo, S., Schweiger, L.F., Zanda, M. & O'Hagan, D. [18F]-5-Fluoro-5-deoxyribose, an efficient peptide bioconjugation ligand for positron emission tomography (PET) imaging. Chem. Commun. 48, 5247–5249 (2012).

    Article  CAS  Google Scholar 

  20. Dirksen, A., Hackeng, T.M. & Dawson, P.E. Nucleophilic catalysis of oxime ether ligation. Angew. Chem. 118, 7743–7746 (2006).

    Article  Google Scholar 

  21. Rayo, J., Amara, N., Krief, P. & Meijler, M.M. Live cell labeling of native intracellular bacterial receptors using aniline-catalyzed oxime ether ligation. J. Am. Chem. Soc. 133, 7469–7475 (2011).

    Article  CAS  Google Scholar 

  22. Kohler, J.J. Aniline: a catalyst for sialic acid detection. ChemBioChem 10, 2147–2150 (2009).

    Article  CAS  Google Scholar 

  23. Liu, Z. et al. Stoichiometric leverage: rapid 18F-aryltrifluoroborate radiosynthesis at high specific activity for click conjugation. Angew. Chem. Int. Ed. 52, 2303–2307 (2013).

    Article  CAS  Google Scholar 

  24. Müller-Platz, C.M., Kloster, G., Legler, G. & Stöcklin, G. 18F-Fluoroacetate: an agent for introducing no-carrier added fluorine-18 into urokinase without loss of biological activity. J. Label. Compd. Radiopharm. 19, 1645–1646 (1982).

    Google Scholar 

  25. Tolmachev, V. & Orlova, A. Influence of labeling methods on biodistribution and imaging properties of radiolabeled peptides for visualisation of molecular therapeutic targets. Curr. Med. Chem. 17, 2636–2655 (2010).

    Article  CAS  Google Scholar 

  26. Gaertner, F.C., Kessler, H., Wester, H.-J., Schwaiger, M. & Beer, A.J. Radiolabeled RGD peptides for imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging 39 (suppl. 1): S126–S138 (2012).

    Article  Google Scholar 

  27. Fani, M. et al. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J. Nucl. Med. 52, 1110–1118 (2011).

    Article  CAS  Google Scholar 

  28. Beer, A.J. et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin. Cancer Res. 12, 3942–3949 (2006).

    Article  CAS  Google Scholar 

  29. Haubner, R. et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug. Chem. 15, 61–69 (2004).

    Article  CAS  Google Scholar 

  30. Wester, H.-J. et al. PET imaging of somatostatin receptors: design, synthesis and preclinical evaluation of a novel 18F-labeled, carbohydrate analogue of octreotide. Eur. J. Nucl. Med. Mol. Imaging 30, 117–122 (2003).

    Article  CAS  Google Scholar 

  31. Meisetschläger, G. et al. Gluc-Lys([18F]FP)-TOCA PET in patients with SSTR-positive tumors: biodistribution and diagnostic evaluation compared with [111In]DTPA-Octreotide. J. Nucl. Med. 47, 566–573 (2006).

    PubMed  Google Scholar 

  32. Wieder, H. et al. PET/CT with Gluc-Lys([18F]FP)-TOCA: correlation between uptake, size and arterial perfusion in somatostatin receptor positive lesions. Eur. J. Nucl. Med. Mol. Imaging 35, 264–272 (2008).

    Article  Google Scholar 

  33. Glaser, M. et al. Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with novel [18F]fluorinated aldehyde-containing prosthetic groups. Bioconjug. Chem. 19, 951–957 (2008).

    Article  CAS  Google Scholar 

  34. Liu, S. et al. 18F-Labeled galacto and PEGylated RGD dimers for PET imaging of αvβ3 integrin expression. Mol. Imaging Biol. 12, 530–538 (2010).

    Article  Google Scholar 

  35. Mu, L. et al. In vitro and in vivo characterization of novel 18F-labeled bombesin analogues for targeting GRPR-positive tumors. Bioconjug. Chem. 21, 1864–1871 (2010).

    Article  CAS  Google Scholar 

  36. Honer, M. et al. 18F-Labeled bombesin analog for specific and effective targeting of prostate tumors expressing gastrin-releasing peptide receptors. J. Nucl. Med. 52, 270–278 (2011).

    Article  CAS  Google Scholar 

  37. Beer, A.J. et al. [18F]Galacto-RGD positron emission tomography for imaging of αvβ3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin. Cancer Res. 13, 6610–6616 (2007).

    Article  CAS  Google Scholar 

  38. Doss, M. et al. Biodistribution and radiation dosimetry of the integrin marker 18F-RGD-K5 determined from whole-body PET/CT in monkeys and humans. J. Nucl. Med. 53, 787–795 (2012).

    Article  Google Scholar 

  39. Chin, F.T. et al. First experience with clinical-grade [18F]FPP(RGD)2: an automated multi-step radiosynthesis for clinical PET studies. Mol. Imaging Biol. 14, 88–95 (2012).

    Article  Google Scholar 

  40. Mittra, E.S. et al. Pilot pharmacokinetic and dosimetric studies of 18F-FPPRGD2: a PET radiopharmaceutical agent for imaging αvβ3 integrin levels. Radiology 260, 182–191 (2011).

    Article  Google Scholar 

  41. McParland, B.J. et al. The biodistribution and radiation dosimetry of the Arg-Gly-Asp peptide 18F-AH111585 in healthy volunteers. J. Nucl. Med. 49, 1664–1667 (2008).

    Article  Google Scholar 

  42. Kenny, L.M. et al. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J. Nucl. Med. 49, 879–886 (2008).

    Article  Google Scholar 

  43. Schaefer, N. et al. Comparison of BAY 86-4367, a new F-18 labeled bombesin analog, with F-18-ethyl-choline in recurrent and primary prostate cancer patients. J. Nucl. Med. 52 (suppl. 1): 40 (2011).

    Google Scholar 

  44. Wan, W. et al. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination. J. Nucl. Med. 54, 691–698 (2013).

    Article  CAS  Google Scholar 

  45. Beer, A.J. et al. PET-based human dosimetry of 18F-Galacto-RGD, a new radiotracer for imaging of αvβ3 expression. J. Nucl. Med. 47, 763–769 (2006).

    CAS  PubMed  Google Scholar 

  46. Beer, A.J. et al. Patterns of αvβ3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J. Nucl. Med. 49, 255–259 (2008).

    Article  Google Scholar 

  47. Flavell, R.R. et al. Site-specific 18F-labeling of the protein hormone leptin using a general two-step ligation procedure. J. Am. Chem. Soc. 130, 9106–9112 (2008).

    Article  CAS  Google Scholar 

  48. Hong, V., Presolski, S.I., Ma, C. & Finn, M.G. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48, 9879–9883 (2009).

    Article  CAS  Google Scholar 

  49. Hausner, S.H., Carpenter, R.D., Bauer, N. & Sutcliffe, J.L. Evaluation of an integrin αvβ6-specific peptide labeled with [18F]fluorine by copper-free, strain-promoted click chemistry. Nucl. Med. Biol. 40, 233–239 (2013).

    Article  CAS  Google Scholar 

  50. Selvaraj, R. et al. Tetrazine-trans-cyclooctene ligation for the rapid construction of integrin αvβ3 targeted PET tracer based on a cyclic RGD peptide. Bioorg. Med. Chem. Lett. 21, 5011–5014 (2011).

    Article  CAS  Google Scholar 

  51. Namavari, M. et al. A novel method for direct site-specific radiolabeling of peptides using [18F]FDG. Bioconjugate Chem. 20, 432–436 (2009).

    Article  CAS  Google Scholar 

  52. Wuest, F., Hultsch, C., Berndt, M. & Bergmann, R. Direct labeling of peptides with 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG). Bioorg. Med. Chem. Lett. 19, 5426–5428 (2009).

    Article  CAS  Google Scholar 

  53. Hultsch, C., Schottelius, M., Auernheimer, J., Alke, A. & Wester, H.-J. 18F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK). Eur. J. Nucl. Med. Mol. Imaging 36, 1469–1474 (2009).

    Article  CAS  Google Scholar 

  54. Maschauer, S. et al. Labeling and glycosylation of peptides using click chemistry: a general approach to 18F-glycopeptides as effective imaging probes for positron emission tomography. Angew. Chem. Int. Ed. 49, 976–979 (2010).

    Article  CAS  Google Scholar 

  55. Dall'Angelo, S. et al. Efficient bioconjugation of 5-fluoro-5-deoxy-ribose (FDR) to RGD peptides for positron emission tomography (PET) imaging of αvβ3 integrin receptor. Org. Biomol. Chem. 11, 4551–4558 (2013).

    Article  CAS  Google Scholar 

  56. Mueller, K. Inflammation's Yin-Yang. Science 339, 155 (2013).

    Article  CAS  Google Scholar 

  57. Li, Y. et al. 18F-Click labeling of a bombesin antagonist with an alkyne-18F-ArBF3-: in vivo PET imaging of tumors expressing the GRP-receptor. Am. J. Nucl. Med. Mol. Imaging 3, 57–70 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, S., Park, R., Conti, P.S. & Li, Z. 'Kit like' 18F labeling method for synthesis of RGD peptide-based PET probes. Am. J. Nucl. Med. Mol. Imaging 3, 97–101 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Höhne, A. et al. Synthesis, 18F-labeling and in vitro and in vivo studies of bombesin peptides modified with silicon-based building blocks. Bioconjugate Chem. 19, 1871–1879 (2008).

    Article  Google Scholar 

  60. McBride, W.J., Sharkey, R.M. & Goldenberg, D.M. Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res. 3, 36 (2013).

    Article  Google Scholar 

  61. Klepper, F., Jahn, E.-M., Hickmann, V. & Carell, T. Synthesis of the transfer-RNA nucleoside queuosine by using a chiral allyl azide intermediate. Angew. Chem. Int. Ed. 46, 2325–2327 (2007).

    Article  CAS  Google Scholar 

  62. Sarabia-García, F. & López-Herrera, F.J. Studies on the synthesis of tunicamycin. The preparation of 7-deoxy-2-deamino-6-hydroxy tunicamine and related products. Tetrahedron 52, 4757–4768 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The Academy of Finland is acknowledged for financial support (grant nos. 133127, 136805 and 140965). The work was conducted within the Finnish Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research supported by the Academy of Finland, the University of Turku, Turku University Hospital and Åbo Akademi University. R.M. Badeau is gratefully acknowledged for the English-language revision of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the finalization of the project and the preparation of the paper.

Corresponding authors

Correspondence to Xiang-Guo Li or Anu J Airaksinen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 The device setup for the radiosynthesis.

The radiosynthesis device was constructed by DM Automation, Sweden. V1-V18 denote remote-controlled solenoid valves. RA and RB denote the reaction vial A and vial B, respectively. Cyl 1–Cyl 5 denote needle lifters. All the valves, needle lifters, heating and cooling of reaction vessels are controlled by a touch panel which is installed outside of the hot cell. Three radioactivity detectors (PIN diode semi-conductor detectors) are placed at the QMA cartridge, the reaction vessel RA and the HPLC outlet, respectively. All waste lines are connected to a waste bottle, which is connected to a decay coil. Ascarite is placed between the waste bottle and the decay coil.

Supplementary Figure 2 Photo and preparation of the ascarite cartridge.

Ascarite (4 ml) is added in between the two pads of cotton in a 5 ml plastic syringe. An adapter is used for connecting this cartridge to the vent system of the radiosynthesis unit. Ascarite is commercially available, e.g. from Aldrich (cat. no. 223921). This cartridge is changed once a week.

Supplementary information

Supplementary Figure 1

The device setup for the radiosynthesis. (PDF 97 kb)

Supplementary Figure 2

Photo and preparation of the ascarite cartridge. (PDF 117 kb)

Supplementary Method 1

Preparation of [19F]FDR-7 as a reference compound. (PDF 99 kb)

Supplementary Method 2

Determination of the specific radioactivity of 18F-labeled peptides. (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XG., Helariutta, K., Roivainen, A. et al. Using 5-deoxy-5-[18F]fluororibose to glycosylate peptides for positron emission tomography. Nat Protoc 9, 138–145 (2014). https://doi.org/10.1038/nprot.2013.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.170

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing