Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation of carboxylate derivatives of terpyridine via the furan pathway

Abstract

This protocol describes a practical procedure for the preparation of terpyridine carboxy derivatives, which have numerous applications, including being photoactive components of functional materials, and which can be used in medicinal chemistry or in catalysis. This protocol relies on the permanganate-mediated oxidation of a furan ring on the polypyridine system. The procedure involves three stages. First, a furan-functionalized terpyridine is synthesized from furfuraldehyde and a 2-acetylpyridine derivative. Second, the furan ring is oxidized thus providing a carboxylic acid. Finally, esters are prepared by reaction of the acids in refluxing alcohols. The procedure is simple, uses a reagent available from renewable resources (furfural) and avoids the use of noxious reagents or solvents, thus making it more environmentally friendly when compared with previously described methods. The whole protocol can be conducted in 10 d, including isolation and drying of intermediates and products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: First stage of the protocol: preparation of furyl precursors 3 and 4.
Figure 4
Figure 5: Final stage of the protocol: esterification.
Figure 6: Other examples of furan oxidation on bipyridine and terpyridine complexes.

Similar content being viewed by others

References

  1. Morgan, S.G. & Burstall, F.H. Dehydrogenation of pyridine of anhydrous ferric chloride. J. Chem. Soc. 1, 20–30 (1932).

    Article  Google Scholar 

  2. Schubert, U.S., Hofmeier, H. & Newkome, G.R. Modern Terpyridine Chemistry (Wiley, 2006).

  3. Schubert, U.S., Winter, A. & Newkome, G.R. Terpyridine-based Materials (Wiley, 2011).

  4. O'Regan, B. & Grätzel, M. A Low cost, high efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

  5. Kalyanasundaram, H. & Grätzel, M. Application of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 77, 347–414 (1998).

    Article  Google Scholar 

  6. Bomben, P.G., Robson, K.C.D., Koivisto, B.D. & Berlinguette, C.P. Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coord. Chem. Rev. 256, 1438–1450 (2012).

    Article  CAS  Google Scholar 

  7. Yin, J.-F., Velayudham, M., Bhattacharya, D., Lin, H.-C. & Lu, K.L. Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells–a goal toward a 'bright' future. Coord. Chem. Rev. 256, 3008–3035 (2012).

    Article  CAS  Google Scholar 

  8. Ito, A. et al. Mass spectrometric analysis using ruthenium (II)-labeling for identification of glycosyl hydrolase product. Biosci. Biotechnol. Biochem. 73, 428–430 (2009).

    Article  CAS  Google Scholar 

  9. Luo, H.-G. et al. Synthesis of porphyrin-appended terpyridine as a chemosensor for cadmium based on fluorescent enhancement. Talanta 72, 575–581 (2007).

    Article  CAS  Google Scholar 

  10. Zhang, N., Yang, J., Hu, R.-X. & Zhang, M.-B. Syntheses and structures of terpyridine-metal complexes. Z. Anorg. Allg. Chem. 639, 197–202 (2013).

    Article  CAS  Google Scholar 

  11. Nazeeruddin, M.K. et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 (2001).

    Article  CAS  Google Scholar 

  12. Fallahpour, R.-A. Carboxylate derivatives of oligopyridines. Synthesis 8, 1138–1142 (2000).

    Article  Google Scholar 

  13. El-ghayoury, A. & Ziessel, R. Facile synthesis of polypyridine esters: a route to functionalized aldehydes. J. Org. Chem. 65, 7757–7763 (2000).

    Article  CAS  Google Scholar 

  14. Kitamura, Y. et al. Template-directed formation of luminescent lanthanide complexes: versatile tools for colorimetric identification of single-nucleotide polymorphism. J. Inorg. Biochem. 102, 1921–1931 (2008).

    Article  CAS  Google Scholar 

  15. Husson, J., Beley, M. & Kirsch, G. A novel pathway for the synthesis of a carboxylic acid-functionalised Ru(II) terpyridine complex. Tetrahedron Lett. 44, 1767–1770 (2003).

    Article  CAS  Google Scholar 

  16. Husson, J. & Knorr, M. Syntheses and applications of furanyl-functionalised 2,2′:6′,2″-terpyridines. Beilstein J. Org. Chem. 8, 379–389 (2012).

    Article  CAS  Google Scholar 

  17. Mamman, A.S. et al. Furfural: hemicelluloses/xylose derived biochemical. Biofuels Bioprod. Biorefin. 2, 438–454 (2008).

    Article  CAS  Google Scholar 

  18. Dehaudt, J., Husson, J. & Guyard, L. A more efficient synthesis of 4,4′,4″-tricarboxy-2,2′:6′,2″-terpyridine. Green Chem. 13, 3337–3340 (2011).

    Article  CAS  Google Scholar 

  19. Raboin, J.-C., Kirsch, G. & Beley, M. On the way to unsymmetrical terpyridines carrying carboxylic acids. J. Heterocyclic Chem. 37, 1077–1080 (2000).

    Article  CAS  Google Scholar 

  20. Wolpher, H. et al. Synthesis and electron transfer studies of ruthenium-terpyridine-based dyads attached to nanostructured TiO2 . Inorg. Chem. 46, 638–651 (2007).

    Article  CAS  Google Scholar 

  21. Constable, E.C. et al. Expanded ligands: bis(2,2′: 6′,2″-terpyridine carboxylic acid) ruthenium(II) complexes as metallosupramolecular analogues of dicarboxylic acids. Dalton Trans. 38, 4323–4332 (2007).

    Article  Google Scholar 

  22. Duprez, V., Biancardo, M. & Krebs, F.C. Characterisation and application of new carboxylic acid-functionalised ruthenium complexes as dye-sensitisers for solar cells. Solar Energy Mater. Solar Cells 91, 230–237 (2007).

    Article  CAS  Google Scholar 

  23. Cooke, M.W., Tremblay, P. & Hanan, G.S. Carboxy-derived (tpy)2Ru2+ complexes as sub-units in supramolecular architectures: The solubilized ligand 4′-(4-carboxyphenyl)-4,4″-di-(tert-butyl)tpy and its homoleptic Ru(II) complex. Inorg. Chim. Acta 361, 2259–2269 (2008).

    Article  CAS  Google Scholar 

  24. Cooke, M.W. et al. Spanning Pairs of Rh2(acetate)4 Units with Ru(II) Complexes. Inorg. Chem. 47, 6112–6114 (2008).

    Article  CAS  Google Scholar 

  25. Jarosz, P. et al. Platinum(II) terpyridyl acetylide complexes on platinized TiO2: toward the photogeneration of H2 in aqueous media. Inorg. Chem. 48, 9653–9663 (2009).

    Article  CAS  Google Scholar 

  26. Koivisto, B.D., Robson, K.C.D. & Berlinguette, C.P. Systematic manipulation of the light-harvesting properties for tridentate cyclometalated Ruthenium (II) complexes. Inorg. Chem. 48, 9644–9652 (2009).

    Article  CAS  Google Scholar 

  27. Cooke, M.W., Santoni, M.-P., Hanan, G.S., Proust, A. & Hasenknopf, B. A divergent strategy for covalently-tethered (tpy)2Ru(II) systems based on Rh2(N,N′-diphenylbenzamidinates)4 . Dalton Trans. 19, 3671–3673 (2009).

    Article  Google Scholar 

  28. Caramori, S. et al. Combination of cobalt and iron polypyridine complexes for improving the charge separation and collection in Ru(terpyridine)2-sensitised solar cells. Chem. Eur. J. 16, 2611–2618 (2010).

    Article  CAS  Google Scholar 

  29. Santoni, M.P., Pal, A.K., Hanan, G.S., Proust, A. & Hasenknopf, B. Discrete covalent organic-inorganic hybrids: terpyridine functionalized polyoxometalates obtained by a modular strategy and their metal complexation. Inorg. Chem. 50, 6737–6745 (2011).

    Article  CAS  Google Scholar 

  30. Shinpuku, Y., Inui, F., Nakai, M. & Nakabayashi, Y. Synthesis and characterization of novel cyclometalated iridium(III) complexes for nanocrystalline TiO2-based dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 222, 203–209 (2011).

    Article  CAS  Google Scholar 

  31. Kimura, M. et al. Improvement of TiO2/Dye/electrolyte interface conditions by positional change of alkyl chains in modified panchromatic Ru complex dyes. Chem. Eur. J. 19, 1028–1034 (2013).

    Article  CAS  Google Scholar 

  32. Ozawa, H., Yamamoto, Y., Fukushima, K., Yamashita, S. & Arakawa, H. Synthesis and characterization of a novel ruthenium sensitizer with a hexylthiophene-functionalized terpyridine ligand for dye-sensitized solar cells. Chem. Lett. 42, 897–899 (2013).

    Article  CAS  Google Scholar 

  33. Wang, J. & Hanan, G.S. A facile route to sterically hindered and non-hindered 4′-aryl-2,2′:6′,2″-terpyridines. Synlett 8, 1251–1254 (2005).

    Google Scholar 

  34. Hernandez-Redondo, A. Copper (I) polypyridine complexes: the sensitizers of the future for dye-sensitized solar cells (DSSCs). Ph.D. Thesis, Basel University (2009).

  35. Van Aken, K., Strekowski, L. & Patiny, L. EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. 2, 3 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

Ville de Besançon is acknowledged for a doctoral grant to J.D. Université de Franche-Comté is acknowledged for financial support through project Bonus Qualité Recherche (BQR) Rebiocell. We would like to thank Dr. I. Jourdain for recording NMR spectra of compounds 7 and 8.

Author information

Authors and Affiliations

Authors

Contributions

J.H. supervised the project, developed the protocol for compound 7, reproduced experiments for compound 8 and wrote the manuscript. J.D. developed the protocol for compound 8. L.G. supervised the project, recorded some analysis and brought assistance in manuscript writing.

Corresponding author

Correspondence to Jérôme Husson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary information

Supplementary Figure 1

Picture of TLC plate of compounds 7 and 8. (PDF 338 kb)

Supplementary Data 1

1H NMR spectrum of compound 7. (PDF 175 kb)

Supplementary Data 2

IR spectrum of compound 7. (PDF 338 kb)

Supplementary Data 3

1H NMR spectrum of compound 8. (PDF 169 kb)

Supplementary Data 4

IR spectrum of compound 8. (PDF 322 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husson, J., Dehaudt, J. & Guyard, L. Preparation of carboxylate derivatives of terpyridine via the furan pathway. Nat Protoc 9, 21–26 (2014). https://doi.org/10.1038/nprot.2013.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.162

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing