Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Discovery of protein interactions using parallel analysis of translated ORFs (PLATO)

Abstract

Parallel analysis of translated open reading frames (ORFs) (PLATO) can be used for the unbiased discovery of interactions between full-length proteins encoded by a library of 'prey' ORFs and surface-immobilized 'bait' antibodies, polypeptides or small-molecular-weight compounds. PLATO uses ribosome display (RD) to link ORF-derived mRNA molecules to the proteins they encode, and recovered mRNA from affinity enrichment is subjected to analysis using massively parallel DNA sequencing. Compared with alternative in vitro methods, PLATO provides several advantages including library size and cost. A unique advantage of PLATO is that an alternative reverse transcription–quantitative PCR (RT-qPCR) protocol can be used to test binding of specific, individual proteins. To illustrate a typical experimental workflow, we demonstrate PLATO for the identification of the immune target of serum antibodies from patients with inclusion body myositis (IBM). Beginning with an ORFeome library in an RD vector, the protocol can produce samples for deep sequencing or RT-qPCR within 4 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the PLATO protocol.
Figure 2: RD vector and mRNA 3′ tag recovery strategy.
Figure 3: Anticipated PLATO results using IBM antisera.

Similar content being viewed by others

References

  1. Zhu, J. et al. Protein interaction discovery using parallel analysis of translated ORFs (PLATO). Nat. Biotechnol. 31, 331–334 (2013).

    Article  CAS  Google Scholar 

  2. Hanes, J. & Pluckthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942 (1997).

    Article  CAS  Google Scholar 

  3. Takahashi, T.T., Austin, R.J. & Roberts, R.W. mRNA display: ligand discovery, interaction analysis and beyond. Trends Biochem. Sci. 28, 159–165 (2003).

    Article  CAS  Google Scholar 

  4. Walhout, A.J. et al. GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 328, 575–592 (2000).

    Article  CAS  Google Scholar 

  5. Brasch, M.A., Hartley, J.L. & Vidal, M. ORFeome cloning and systems biology: standardized mass production of the parts from the parts-list. Genome Res. 14, 2001–2009 (2004).

    Article  CAS  Google Scholar 

  6. Temple, G. et al. The completion of the mammalian gene collection (MGC). Genome Res. 19, 2324–2333 (2009).

    Article  Google Scholar 

  7. Yang, X. et al. A public genome-scale lentiviral expression library of human ORFs. Nat. Methods 8, 659–661 (2011).

    Article  CAS  Google Scholar 

  8. Brandner, C.J. et al. The ORFeome of Staphylococcus aureus v 1.1. BMC Genomics 9, 321 (2008).

    Article  Google Scholar 

  9. D'Angelo, S. et al. Filtering 'genic' open reading frames from genomic DNA samples for advanced annotation. BMC Genomics 12 (suppl. 1), S5 (2011).

    Article  CAS  Google Scholar 

  10. Hartley, J.L., Temple, G.F. & Brasch, M.A. DNA cloning using in vitro site-specific recombination. Genome Res 10, 1788–1795 (2000).

    Article  CAS  Google Scholar 

  11. Katzen, F. Gateway recombinational cloning: a biological operating system. Exp. Opin. Drug Discov. 2, 571–589 (2007).

    Article  CAS  Google Scholar 

  12. Lamesch, P. et al. hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics 89, 307–315 (2007).

    Article  CAS  Google Scholar 

  13. Yu, H. et al. Next-generation sequencing to generate interactome datasets. Nat. Methods 8, 478–480 (2011).

    Article  CAS  Google Scholar 

  14. Dreier, B. & Pluckthun, A. Rapid selection of high-affinity binders using ribosome display. Methods Mol. Biol. 805, 261–286 (2012).

    Article  CAS  Google Scholar 

  15. Hajnsdorf, E., Braun, F., Haugel-Nielsen, J., Le Derout, J. & Regnier, P. Multiple degradation pathways of the rpsO mRNA of Escherichia coli. RNase E interacts with the 5′ and 3′ extremities of the primary transcript. Biochimie 78, 416–424 (1996).

    Article  CAS  Google Scholar 

  16. Carlson, E.D., Gan, R., Hodgman, C.E. & Jewett, M.C. Cell-free protein synthesis: applications come of age. Biotechnol. Adv. 30, 1185–1194 (2012).

    Article  CAS  Google Scholar 

  17. Goshima, N. et al. Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat. Methods 5, 1011–1017 (2008).

    Article  CAS  Google Scholar 

  18. He, M. & Taussig, M.J. Eukaryotic ribosome display with in situ DNA recovery. Nat. Methods 4, 281–288 (2007).

    Article  CAS  Google Scholar 

  19. Dabney, J. & Meyer, M. Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. BioTechniques 52, 87–94 (2012).

    Article  CAS  Google Scholar 

  20. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  21. Fonseca, N.A., Rung, J., Brazma, A. & Marioni, J.C. Tools for mapping high-throughput sequencing data. Bioinformatics 28, 3169–3177 (2012).

    Article  CAS  Google Scholar 

  22. Somwar, R. et al. Superoxide dismutase 1 (SOD1) is a target for a small molecule identified in a screen for inhibitors of the growth of lung adenocarcinoma cell lines. Proc. Natl. Acad. Sci. USA 108, 16375–16380 (2011).

    Article  CAS  Google Scholar 

  23. Larman, H.B. et al. Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann. Neurol. 73, 408–418 (2013).

    Article  Google Scholar 

  24. Pluk, H. et al. Autoantibodies to cytosolic 5′-nucleotidase 1A in inclusion body myositis. Ann. Neurol. 73, 397–407 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

IBM patient sera were kindly provided by Stephen A. Greenberg (Brigham and Women's Hospital). The ORFeome library v5.1 was provided by the Center for Cancer Systems Biology (CCSB) at the Dana-Farber Cancer Institute (Boston, Massachusetts). This work was supported in part by a grant from the Leona M. and Harry B. Helmsley Charitable Trust. S.J.E. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

H.B.L., S.J.E. and J.Z. developed the protocol. H.B.L. and J.Z. wrote the paper. J.Z. performed the PLATO screen with IBM samples. A.C.L. performed the immunofluorescence.

Corresponding authors

Correspondence to Stephen J Elledge or Jian Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larman, H., Liang, A., Elledge, S. et al. Discovery of protein interactions using parallel analysis of translated ORFs (PLATO). Nat Protoc 9, 90–103 (2014). https://doi.org/10.1038/nprot.2013.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.167

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research