Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Relative and absolute determination of fluorescence quantum yields of transparent samples

Abstract

Luminescence techniques are among the most widely used detection methods in the life and material sciences. At the core of these methods is an ever-increasing variety of fluorescent reporters (i.e., simple dyes, fluorescent labels, probes, sensors and switches) from different fluorophore classes ranging from small organic dyes and metal ion complexes, quantum dots and upconversion nanocrystals to differently sized fluorophore-doped or fluorophore-labeled polymeric particles. A key parameter for fluorophore comparison is the fluorescence quantum yield (Φf), which is the direct measure for the efficiency of the conversion of absorbed light into emitted light. In this protocol, we describe procedures for relative and absolute determinations of Φf values of fluorophores in transparent solution using optical methods, and we address typical sources of uncertainty and fluorophore class-specific challenges. For relative determinations of Φf, the sample is analyzed using a conventional fluorescence spectrometer. For absolute determinations of Φf, a calibrated stand-alone integrating sphere setup is used. To reduce standard-related uncertainties for relative measurements, we introduce a series of eight candidate quantum yield standards for the wavelength region of 350–950 nm, which we have assessed with commercial and custom-designed instrumentation. With these protocols and standards, uncertainties of 5–10% can be achieved within 2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absorption (top) and emission (bottom) spectra of the recommended quantum yield standards.
Figure 2
Figure 3: Scheme of a fluorescence spectrometer (configuration A) and an integrating sphere setup (configuration B).
Figure 4: Absorption spectra of the sample (Ax) and the standard (Ast).
Figure 5: Example emission spectra of the sample (Ic,x) and the standard (Ic,st).
Figure 6: Example of the signals of an integrating sphere measurement for the sample and the blank.
Figure 7: The effect of spectral correction on the shape and relative intensities of the emission spectra of two dyes.
Figure 8: Visualization of the effect of a scattering background on a dye's absorption spectrum.
Figure 9: Distortion of the emission spectrum as a result of fluorescence reabsorption.
Figure 10: Typical changes in the absorption spectrum caused by dye aggregation (H-type aggregates).
Figure 11: Concentration dependence of the fluorescence quantum yield of two CdTe quantum dots differing in particle size.

Similar content being viewed by others

References

  1. Lakowicz, J.R. Principles of Fluorescence Spectroscopy. (Springer, 2006).

  2. Valeur, B. & Berberan-Santos, M.N. Molecular Fluorescence: Principles and Applications (Wiley, 2012).

  3. Mason, W.T. Fluorescent and Luminescent Probes for Biological Activity (ed. Sattelle, D.B.) (Academic Press, 1999).

  4. Weissleder, R. & Pittet, M.J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berezin, M.Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lavis, L.D. & Raines, R.T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giepmans, B.N.G., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P.L. & Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boens, N., Leen, V. & Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 41, 1130–1172 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Han, J.Y. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709–2728 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Escobedo, J.O., Rusin, O., Lim, S. & Strongin, R.M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 14, 64–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y.X., Shyy, J.Y.J. & Chien, S. Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu. Rev. Biomed. Eng. 10, 1–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Algar, W.R., Tavares, A.J. & Krull, U.J. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Analytica Chimica Acta 673, 1–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Algar, W.R., Susumu, K., Delehanty, J.B. & Medintz, I.L. Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal. Chem. 83, 8826–8837 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article  CAS  Google Scholar 

  17. Mader, H.S., Kele, P., Saleh, S.M. & Wolfbeis, O.S. Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr. Opin. Chem. Biol. 14, 582–596 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Waggoner, A. Fluorescent labels for proteomics and genomics. Curr. Opin. Chem. Biol. 10, 62–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Sapsford, K.E., Berti, L. & Medintz, I.L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed. 45, 4562–4588 (2006).

    Article  CAS  Google Scholar 

  21. Schaferling, M. & Nagl, S. Optical technologies for the read out and quality control of DNA and protein microarrays. Anal. Bioanal. Chem. 385, 500–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Levitus, M. & Ranjit, S. Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments. Q. Rev. Biophys. 44, 123–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Resch-Genger, U. & Licha, K. Probes for optical imaging. Drug Discovery Today 8 2011.

  24. Kobayashi, H., Longmire, M.R., Ogawa, M. & Choyke, P.L. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals. Chem. Soc. Rev. 40, 4626–4648 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Demchenko, A.P. Optimization of fluorescence response in the design of molecular biosensors. Anal. Biochem. 343, 1–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Borisov, S.M. & Wolfbeis, O.S. Optical biosensors. Chem. Rev. 108, 423–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Rurack, K. & Resch-Genger, U. Rigidization, preorientation and electronic decoupling—the 'magic triangle' for the design of highly efficient fluorescent sensors and switches. Chem. Soc. Rev. 31, 116–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. de Silva, A.P. . et al. Signaling recognition events with fluorescent sensors. Chem. Rev. 97, 1515–1566 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Burns, A., Ow, H. & Wiesner, U. Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem. Soc. Rev. 35, 1028–1042 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Zamborini, F.P., Bao, L. & Dasari, R. Nanoparticles in measurement science. Anal. Chem. 84, 541–576 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, Y.E.K., Smith, R. & Kopelman, R. Nanoparticle PEBBLE sensors in live cells and in vivo. Ann. Rev. Anal. Chem. 2, 57–76 (2009).

    Article  CAS  Google Scholar 

  32. Louie, A. Multimodality imaging probes: design and challenges. Chem. Rev. 110, 3146–3195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bünzli, J.-C.G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729–2755 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Medintz, I.L., Uyeda, H.T., Goldman, E.R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Materials 4, 435–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Xing, Y. et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–1165 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Resch-Genger, U. et al. How to improve quality assurance in fluorometry: fluorescence-inherent sources of error and suited fluorescence standards. J. Fluoresc. 15, 337–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Demas, J.N. & Crosby, G.A. The measurement of photoluminescence quantum yields. A review. J. Phys. Chem. 75, 991–1024 (1971).

    Article  Google Scholar 

  38. Demas, J.N. Measurement of Photon Yields (ed. Mielenz, K.D.) (Academic Press, 1982).

  39. Parker, C.A. & Rees, W.T. Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst 85, 587–600 (1960).

    Article  CAS  Google Scholar 

  40. Velapoldi, R.A. & Tonnesen, H.H. Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J. Fluoresc. 14, 465–472 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Grabolle, M. et al. Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal. Chem. 81, 6285–6294 (2009).

    Article  CAS  Google Scholar 

  42. Galanin, M.D., Kufénko, A.A., Smorchkov, V.N., Timofee, Y.P. & Chizhikov, Z.A. Measurement of photoluminescence quantum yield of dye solutions by the Vavilov and integrating-sphere methods. Opt. Spektrosk. 53, 683–689 (1982).

    CAS  Google Scholar 

  43. Suzuki, K. et al. Re-evaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 11, 9850–9860 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Porrès, L. et al. Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J. Fluoresc. 16, 267–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. de Mello, J.C., Wittmann, H.F. & Friend, R.H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  CAS  Google Scholar 

  46. Rurack, K. Fluorescence quantum yields-methods of determination and standards. in Standardization and Quality Assurance in Fluorescence Measurements I: Techniques (ed. Resch-Genger, U.) (Springer, 2008).

  47. Würth, C. et al. Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions. Appl. Spectrosc. 64, 733–741 (2010).

    Article  PubMed  Google Scholar 

  48. Würth, C., Grabolle, M., Pauli, J., Spieles, M. & Resch-Genger, U. Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields. Anal. Chem. 83, 3431–3439 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Würth, C., Pauli, J., Lochmann, C., Spieles, M. & Resch-Genger, U. Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Anal. Chem. 84, 1345–1352 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Braslavsky, S.E. Glossary of terms used in photochemistry 3rd edn (IUPAC Recommendations 2006). Pure Appl. Chem. 79, 293–465 (2007).

    Article  CAS  Google Scholar 

  51. Semonin, O.E. et al. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J. Phys. Chem. Lett. 1, 2445–2450 (2010).

    Article  CAS  Google Scholar 

  52. Boyer, J.C. & van Veggel, F. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Greenham, N.C. et al. Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers. Chem. Phys. Lett. 241, 89–96 (1995).

    Article  CAS  Google Scholar 

  54. Poikonen, T., Manninen, P., Karha, P. & Ikonen, E. Multifunctional integrating sphere setup for luminous flux measurements of light-emitting diodes. Rev. Sci. Instrum. 81 (2010).

  55. Tomasini, E.P., San Roman, E. & Braslavsky, S.E. Validation of fluorescence quantum yields for light-scattering powdered samples by laser-induced optoacoustic spectroscopy. Langmuir 25, 5861–5868 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Olmsted, J. Calorimetrc determinations of absolute fluorescence quantum yields. J. Phys. Chem. 83, 2581–2584 (1979).

    Article  CAS  Google Scholar 

  57. Würth, C. et al. Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods—providing the basis for fluorescence quantum yield standards. Talanta 90, 30–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Resch-Genger, U. et al. State-of-the art comparability of corrected emission spectra.1. Spectral correction with physical transfer standards and spectral fluorescence standards by Expert Laboratories. Anal. Chem. 84, 3889–3898 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Resch-Genger, U. et al. State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards. Anal. Chem. 84, 3899–3907 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution. Pure Appl. Chem. 83, 2213–2228 (2011).

    Article  CAS  Google Scholar 

  61. Xiao, M. & Selvin, P.R. Quantum yields of luminescent lanthanide chelates and far-red dyes measured by resonance energy transfer. J. Am. Chem. Soc. 123, 7067–7073 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Nijegorodov, N., Mabbs, R. & Winkoun, D.P. Influence of weak and strong donor groups on the fluorescence parameters and the intersystem crossing rate constant. Spectrochim. Acta A Mol. Biomol. Spectrosc. 59, 595–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Nijegorodov, N., Vasilenko, V., Monowe, P. & Masale, M. Systematic investigation of the influence of methyl groups upon fluorescence parameters and the intersystem crossing rate constant of aromatic molecules. Spectrochim. Acta A Mol. Biomol. Spectrosc. 74, 188–194 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Nijegorodov, N.I. & Downey, W.S. The influence of planarity and rigidity on the absorption and fluorescence parameters and intersystem crossing rate-constant in aromatic-molecules. J. Phys. Chem. 98, 5639–5643 (1994).

    Article  CAS  Google Scholar 

  65. Van Anh, N. et al. Photoinduced interactions in a pyrene-calix 4 arene-perylene bisimide dye system: probing ground-state conformations with excited-state dynamics of charge separation and recombination. J. Phys. Chem. C 113, 18358–18368 (2009).

    Article  CAS  Google Scholar 

  66. Resch-Genger, U. & deRose, P. Fluorescence standards: classification, terminology, and recommendations on their selection, use, and production (IUPAC Technical Report). Pure Appl. Chem. 82, 2315–2335 (2010).

    Article  CAS  Google Scholar 

  67. Melhuish, W.H. Quantum efficiencies of fluorescence of organic substances—effect of solvent and concentration of fluorescent solute. J. Phys. Chem. 65, 229–235 (1961).

    Article  CAS  Google Scholar 

  68. Shah, J.J., Gaitan, M. & Geist, J. Generalized temperature measurement equations for rhodamine B dye solution and its application to microfluidics. Anal. Chem. 81, 8260–8263 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Ross, D., Gaitan, M. & Locascio, L.E. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 73, 4117–4123 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Eaton, D.F. Reference materials for fluorescence measurement. Pure Appl. Chem. 60, 1107–1114 (1988).

    Article  CAS  Google Scholar 

  71. Magde, D., Wong, R. & Seybold, P.G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 75, 327–334 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Drexhage, K.H. Fluorescence efficiency of laser dyes. J. Res. Natl. Bureau Stand. Sec. A: Phys. Ch. 80, 421–428 (1976).

    Article  Google Scholar 

  73. Magde, D., Brannon, J.H., Cremers, T.L. & Olmsted, J. Absolute luminescence yield of cresyl violet—standard for the red. J. Phys. Chem. 83, 696–699 (1979).

    Article  CAS  Google Scholar 

  74. Velapoldi, R.A. & Mielenz, K.D. A fluorescence standard reference material: quinine sulfate dihydrate. National Bureau of Standards Special Publication 260-64 1–115 (US Government Printing Office, 1980).

  75. Resch-Genger, U. et al. Traceability in fluorometry: part II. Spectral fluorescence standards. J. Fluoresc. 15, 315–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Resch-Genger, U. & deRose, P.C. Characterization of photoluminescence measuring systems (IUPAC Technical Report). Pure Appl. Chem. 84, 1815–1835 (2012).

    Article  CAS  Google Scholar 

  77. DeRose, P.C. & Resch-Genger, U. Recommendations for fluorescence instrument qualification: the new ASTM standard guide. Anal. Chem. 82, 2129–2133 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Hollandt, J. et al. Traceability in fluorometry—part I: physical standards. J. Fluoresc. 15, 301–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Pfeifer, D., Hoffmann, K., Hoffmann, A., Monte, C. & Resch-Genger, U. The calibration kit spectral fluorescence standards—a simple and certified tool for the standardization of the spectral characteristics of fluorescence instruments. J. Fluoresc. 16, 581–587 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Gardecki, J.A. & Maroncelli, M. Set of secondary emission standards for calibration of the spectral responsivity in emission spectroscopy. Appl. Spectrosc. 52, 1179–1189 (1998).

    Article  CAS  Google Scholar 

  81. Resch-Genger, U., Hoffmann, K. & Pfeifer, D. Simple instrument calibration and validation standards for fluorescence techniques. in Reviews in Fluorescence (ed. Geddes, C.D.) 1–32 (Springer Science Business Media, 2009).

  82. Chapman, J.H. et al. Proposal for the standardization of reporting fluorescence emission spectra. Appl. Spectrosc. 17, 171–171 (1963).

    Google Scholar 

  83. Mielenz, K.D. Refraction correction for fluorescence spectra of aqueous solutions. Appl. Optics 17, 2875–2876 (1978).

    Article  CAS  Google Scholar 

  84. Ahn, T.S., Al-Kaysi, R.O., Mueller, A.M., Wentz, K.M. & Bardeen, C.J. Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements. Rev. Sci. Instrum. 78 (2007).

  85. Martini, M. et al. How to measure quantum yields in scattering media: application to the quantum yield measurement of fluorescein molecules encapsulated in sub-100 nm silica particles. J. Appl. Phys. 106 (2009).

  86. Huber, A., Behnke, T., Würth, C., Jaeger, C. & Resch-Genger, U. Spectroscopic characterization of coumarin-stained beads: quantification of the number of fluorophores per particle with solid-state 19F-NMR and measurement of absolute fluorescence quantum yields. Anal. Chem. 84, 3654–3661 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Napp, J. et al. Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia. Anal. Chem. 83, 9039–9046 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Laux, E.M., Behnke, T., Hoffmann, K. & Resch-Genger, U. Keeping particles brilliant—simple methods for the determination of the dye content of fluorophore-loaded polymeric particles. Anal. Methods 4, 1759–1768 (2012).

    Article  CAS  Google Scholar 

  89. Pauli, J. et al. Suitable labels for molecular imaging—influence of dye structure and hydrophilicity on the spectroscopic properties of IgG conjugates. Bioconjug. Chem. 22, 1298–1308 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, S.F. & Osborne, M.A. Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe? ChemPhysChem. 10, 2174–2191 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Federal Ministry of Economics and Technology (BMWI; program 'Messen, Normen, Prüfen, und Qualitätssicherung' (MNPQ), projects BMWI-22/06, BMWI-17/07 and BMWI-13/09) and from the European Union (European Metrology Research Programme (EMRP), grant NanaChOp, NEW03).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the concept of the manuscript and to the Experimental design and MATERIALS sections. The 'General remarks' (INTRODUCTION) and section were written by C.W. and M.G. with aid from U.R.-G. The procedure for relative quantum yield measurements was developed and written by M.G., J.P. and C.W. The procedure for absolute quantum yield measurements was developed, simplified and written by C.W. M.S. contributed technically, with, e.g., new measurements of dye purity. U.R.-G. initiated this research, wrote the introduction and gave an overview of different techniques for the determination of photoluminescence quantum yields including topics such as limitations, method development and fluorescence standards.

TROUBLESHOOTING

Corresponding author

Correspondence to Ute Resch-Genger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Determination of the spectral responsivity of fluorescence instruments (PDF 1715 kb)

Supplementary Data

Chemical data for the standards used in the protocol (PDF 573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Würth, C., Grabolle, M., Pauli, J. et al. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8, 1535–1550 (2013). https://doi.org/10.1038/nprot.2013.087

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.087

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing