Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy

Abstract

Here we describe a protocol for using force-clamp spectroscopy to precisely quantify the effect of force on biochemical reactions. A calibrated force is used to control the exposure of reactive sites in a single polyprotein substrate composed of repeated domains. The use of polyproteins allows the identification of successful single-molecule recordings from unambiguous mechanical unfolding fingerprints. Biochemical reactions are then measured directly by detecting the length changes of the substrate held at a constant force. We present the layout of a force-clamp spectrometer along with protocols to design and conduct experiments. These experiments measure reaction kinetics as a function of applied force. We show sample data of the force dependency of two different reactions, protein unfolding and disulfide reduction. These data, which can be acquired in just a few days, reveal mechanistic details of the reactions that currently cannot be resolved by any other technique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Force-clamp AFM.
Figure 2: Calibration of AFM cantilevers.
Figure 3: Covalent attachment chemistry via HaloTag protein for AFM measurements.
Figure 4: Cropping force-clamp traces.
Figure 5: A walkthrough from cut traces to measured rates.
Figure 6: Illustration of possible problems during an AFM force-clamp experiment.
Figure 7: Summary of possible artifacts in force-clamp AFM.
Figure 8: Expected results using force-clamp AFM.

Similar content being viewed by others

References

  1. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Oberhauser, A.F., Marszalek, P.E., Erickson, H.P. & Fernandez, J.M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H.E. Single-molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Smith, S.B., Cui, Y.J. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Carrion-Vazquez, M. et al. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog. Biophys. Mol. Biol. 74, 63–91 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Oberhauser, A.F., Badilla-Fernandez, C., Carrion-Vazquez, M. & Fernandez, J.M. The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319, 433–447 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature 418, 998–1002 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Carrion-Vazquez, M. et al. The mechanical stability of ubiquitin is linkage dependent. Nat. Struct. Biol. 10, 738–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Brockwell, D.J. et al. Pulling geometry defines the mechanical resistance of a β-sheet protein. Nat. Struct. Biol. 10, 731–737 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Dietz, H. & Rief, M. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl. Acad. Sci. USA 101, 16192–16197 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iozzi, M.F., Helgaker, T. & Uggerud, E. Influence of external force on properties and reactivity of disulfide bonds. J. Phys. Chem. A 115, 2308–2315 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Ainavarapu, S.R. et al. Contour length and refolding rate of a small protein controlled by engineered disulfide bonds. Biophys. J. 92, 225–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Wiita, A.P., Ainavarapu, S.R., Huang, H.H. & Fernandez, J.M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl. Acad. Sci. USA 103, 7222–7227 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oberhauser, A.F., Hansma, P.K., Carrion-Vazquez, M. & Fernandez, J.M. Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl. Acad. Sci. USA 98, 468–472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schlierf, M., Li, H. & Fernandez, J.M. The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc. Natl. Acad. Sci. USA 101, 7299–7304 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wiita, A.P. et al. Probing the chemistry of thioredoxin catalysis with force. Nature 450, 124–127 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuo, T.L. et al. Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy. Proc. Natl. Acad. Sci. USA 107, 11336–11340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garcia-Manyes, S., Dougan, L. & Fernandez, J.M. Osmolyte-induced separation of the mechanical folding phases of ubiquitin. Proc. Natl. Acad. Sci. USA 106, 10540–10545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Popa, I., Fernandez, J.M. & Garcia-Manyes, S. Direct quantification of the attempt frequency determining the mechanical unfolding of ubiquitin protein. J. Biol. Chem. 286, 31072–31079 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Manyes, S., Dougan, L., Badilla, C.L., Brujic, J. & Fernandez, J.M. Direct observation of an ensemble of stable collapsed states in the mechanical folding of ubiquitin. Proc. Natl. Acad. Sci. USA 106, 10534–10539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berkovich, R. et al. Rate limit of protein elastic response is tether dependent. Proc. Natl. Acad. Sci. USA 109, 14416–14421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garcia-Manyes, S., Brujic, J., Badilla, C.L. & Fernandez, J.M. Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin. Biophys. J. 93, 2436–2446 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walther, K.A. et al. Signatures of hydrophobic collapse in extended proteins captured with force spectroscopy. Proc. Natl. Acad. Sci. USA 104, 7916–7921 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garcia-Manyes, S., Liang, J., Szoszkiewicz, R., Kuo, T.L. & Fernandez, J.M. Force-activated reactivity switch in a bimolecular chemical reaction. Nat. Chem. 1, 236–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Ainavarapu, S.R.K., Wiita, A.P., Dougan, L., Uggerud, E. & Fernandez, J.M. Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction. J. Am. Chem. Soc. 130, 6479–6487 (2008).

    Article  CAS  Google Scholar 

  26. Liang, J. & Fernandez, J.M. Kinetic measurements on single-molecule disulfide bond cleavage. J. Am. Chem. Soc. 133, 3528–3534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perez-Jimenez, R. et al. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat. Struct. Mol. Biol. 18, U592–U599 (2011).

  28. Perez-Jimenez, R. et al. Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy. Nat. Struct. Mol. Biol. 16, 890–896 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Furuike, S., Ito, T. & Yamazaki, M. Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy. Febs Lett. 498, 72–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Hutter, J.L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

  32. Taniguchi, Y. & Kawakami, M. Application of HaloTag protein to covalent immobilization of recombinant proteins for single molecule force spectroscopy. Langmuir 26, 10433–10436 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, T., Arakawa, H. & Ikai, A. Force measurement and inhibitor binding assay of monomer and engineered dimer of bovine carbonic anhydrase B. Biochem. Biophys. Res. Commun. 285, 9–14 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Kufer, S.K. et al. Covalent immobilization of recombinant fusion proteins with hAGT for single-molecule force spectroscopy. Eur. Biophys. J. Biophys. Lett. 35, 72–78 (2005).

    Article  CAS  Google Scholar 

  35. Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl. Acad. Sci. USA 109, E690–E697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brujic, J., Hermans, R.I.Z., Garcia-Manyes, S., Walther, K.A. & Fernandez, J.M. Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy. Biophys. J. 92, 2896–2903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szoszkiewicz, R. et al. Dwell time analysis of a single-molecule mechanochemical reaction. Langmuir 24, 1356–1364 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Alegre-Cebollada, J., Kosuri, P., Rivas-Pardo, J.A. & Fernandez, J.M. Direct observation of disulfide isomerization in a single protein. Nat. Chem. 3, 882–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia-Manyes, S., Kuo, T.L. & Fernandez, J.M. Contrasting the individual reactive pathways in protein unfolding and disulfide bond reduction observed within a single protein. J. Am. Chem. Soc. 133, 3104–3113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bell, G.I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  PubMed  Google Scholar 

  41. Evans, E. Probing the relation between force—lifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  42. Dudko, O.K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. Brujic, J., Hermans, R.I., Walther, K.A. & Fernandez, J.M. Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin. Nat. Phys. 2, 282–286 (2006).

    Article  CAS  Google Scholar 

  44. Berkovich, R., Garcia-Manyes, S., Urbakh, M., Klafter, J. & Fernandez, J.M. Collapse dynamics of single proteins extended by force. Biophys. J. 98, 2692–2701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Efron, B. The Jackknife, the Bootstrap, and Other Resampling Plans (Society for Industrial and Applied Mathematics, 1982).

  46. Kosuri, P. et al. Protein folding drives disulfide formation. Cell 151, 794–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fernandez, J.M. & Li, H. Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Redondo-Morata, L., Giannotti, M.I. & Sanz, F. AFM-based force-clamp monitors lipid bilayer failure kinetics. Langmuir 28, 6403–6410 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Le Trong, I. et al. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like β sheet twisting. Cell 141, 645–655 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Favre, M. et al. Force-clamp spectroscopy with a small dithering of AFM tip, and its application to explore the energy landscape of single avidin-biotin complex. Ultramicroscopy 107, 882–886 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Choy, J.L. et al. Differential force microscope for long time-scale biophysical measurements. Rev. Sci. Instrum. 78, 043711 (2007).

    Article  PubMed  CAS  Google Scholar 

  52. Zheng, P. & Li, H.B. Highly covalent ferric-thiolate bonds exhibit surprisingly low mechanical stability. J. Am. Chem. Soc. 133, 6791–6798 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Kim, J., Zhang, C.Z., Zhang, X.H. & Springer, T.A. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 466, U992–U123 (2010).

    Article  CAS  Google Scholar 

  54. Alegre-Cebollada, J., Badilla, C.L. & Fernandez, J.M. Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes. J. Biol. Chem. 285, 11235–11242 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Klukovich, H.M., Kouznetsova, T.B., Kean, Z.S., Lenhardt, J.M. & Craig, S.L. A backbone lever-arm effect enhances polymer mechanochemistry. Nat. Chem. 5, 110–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, R.C., Garcia-Manyes, S., Sarkar, A., Badilla, C.L. & Fernandez, J.M. Mechanical characterization of protein L in the low-force regime by electromagnetic tweezers/evanescent nanometry. Biophys. J. 96, 3810–3821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cao, Y., Kuske, R. & Li, H.B. Direct observation of Markovian behavior of the mechanical unfolding of individual proteins. Biophys. J. 95, 782–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, W.J. & Grater, F. atomistic evidence of how force dynamically regulates thiol/disulfide exchange. J. Am. Chem. Soc. 132, 16790–16795 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Zimmermann, J.L., Nicolaus, T., Neuert, G. & Blank, K. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat. Protoc. 5, 975–985 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge all the past and present members of the Fernandez laboratory for their contribution in developing the AFM force-clamp technique. We acknowledge Luigs & Neumann for the pictures of the AFM setup and R.T. Sauer from Massachusetts Institute of Technology for the ERL-competent cells. This work was supported by grants from the US National Institutes of Health (HL066030 and HL061228 to J.M.F.). I.P. acknowledges the Swiss National Science Foundation for a postdoctoral research grant. J.A-.C. acknowledges a Fellowship from Fundación Ibercaja.

Author information

Authors and Affiliations

Authors

Contributions

All the authors performed the measurements and wrote the manuscript.

Corresponding authors

Correspondence to Ionel Popa, Pallav Kosuri or Julio M Fernandez.

Ethics declarations

Competing interests

Columbia University has licensed intellectual property to Luigs & Neumann GmbH.

Supplementary information

Supplementary Data

Raw data set for the mechanical unfolding of I27 in the presence of 30% glycerol, measured at four different forces. This is a single typical experiment that shows the full spectrum of challenges encountered when analyzing force-clamp measurements. (ZIP 278650 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa, I., Kosuri, P., Alegre-Cebollada, J. et al. Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy. Nat Protoc 8, 1261–1276 (2013). https://doi.org/10.1038/nprot.2013.056

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.056

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing