Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells

Abstract

Mitochondria peroxy yellow 1 (MitoPY1) is a small-molecule fluorescent probe that selectively tracks to the mitochondria of live biological specimens and responds to local fluxes of hydrogen peroxide (H2O2) by a turn-on fluorescence enhancement. This bifunctional dye uses a triphenylphosphonium targeting group and a boronate-based molecular switch to selectively respond to H2O2 over competing reactive oxygen species (ROS) within the mitochondria. MitoPY1 can be used to measure mitochondrial H2O2 levels in both cell culture and tissue models. In this protocol, we describe the synthesis of MitoPY1 and how to use this chemical tool to visualize mitochondrial H2O2 in live cells. The preparation of MitoPY1 is anticipated to take 7–10 d, and assays involving microscopy of cultured mammalian cells can be performed in 1–2 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondria Peroxy Yellow 1 (MitoPY1).
Figure 2: Fluorescence turn-on response of 5 μM MitoPY1 to H2O2.
Figure 3: Imaging mitochondrial H2O2 in live cells with MitoPY1.

Similar content being viewed by others

References

  1. Sundaresan, M., Yu, Z.X., Ferrans, V.J., Irani, K. & Finkel, T. Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299 (1995).

    Article  CAS  Google Scholar 

  2. Niethammer, P., Grabher, C., Look, A.T. & Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009).

    Article  CAS  Google Scholar 

  3. Le Belle, J.E. et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71 (2011).

    Article  CAS  Google Scholar 

  4. Dickinson, B.C., Peltier, J., Stone, D., Schaffer, D.V. & Chang, C.J. Nox2 redox signaling maintains essential cell populations in the brain. Nat. Chem. Biol. 7, 106–112 (2011).

    Article  CAS  Google Scholar 

  5. O'Neill, J.S. & Reddy, A.B. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).

    Article  CAS  Google Scholar 

  6. O'Neill, J.S. et al. Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554–558 (2011).

    Article  CAS  Google Scholar 

  7. Winterbourn, C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008).

    Article  CAS  Google Scholar 

  8. Murphy, M.P. et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 13, 361–366 (2011).

    Article  CAS  Google Scholar 

  9. Dickinson, B.C. & Chang, C.J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011).

    Article  CAS  Google Scholar 

  10. Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    Article  CAS  Google Scholar 

  11. Rhee, S.G. Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    Article  Google Scholar 

  12. D'Autreaux, B. & Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    Article  CAS  Google Scholar 

  13. Paulsen, C.E. & Carroll, K.S. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem. Biol. 5, 47–62 (2010).

    Article  CAS  Google Scholar 

  14. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article  CAS  Google Scholar 

  15. Giorgio, M. et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122, 221–233 (2005).

    Article  CAS  Google Scholar 

  16. Veeramani, S., Yuan, T.C., Lin, F.F. & Lin, M.F. Mitochondrial redox signaling by p66Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells. Oncogene 27, 5057–5068 (2008).

    Article  CAS  Google Scholar 

  17. Bao, L. et al. Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling. J. Neurosci. 29, 9002–9010 (2009).

    Article  CAS  Google Scholar 

  18. Dickinson, B.C., Srikun, D. & Chang, C.J. Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr. Opin. Chem. Biol. 14, 50–56 (2010).

    Article  CAS  Google Scholar 

  19. Robinson, K.M. et al. Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc. Natl. Acad. Sci. USA 103, 15038–15043 (2006).

    Article  CAS  Google Scholar 

  20. Koide, Y., Urano, Y., Kenmoku, S., Kojima, H. & Nagano, T. Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. J. Am. Chem. Soc. 129, 10324–10325 (2007).

    Article  CAS  Google Scholar 

  21. Dickinson, B.C. & Chang, C.J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. 130, 9638–9639 (2008).

    Article  CAS  Google Scholar 

  22. Hanson, G.T. et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279, 13044–13053 (2004).

    Article  CAS  Google Scholar 

  23. Belousov, V.V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3, 281–286 (2006).

    Article  CAS  Google Scholar 

  24. Meyer, A.J. & Dick, T.P. Fluorescent protein-based redox probes. Antioxid. Redox Signal 13, 621–650 (2010).

    Article  CAS  Google Scholar 

  25. Markvicheva, K.N. et al. A genetically encoded sensor for H2O2 with expanded dynamic range. Bioorg. Med. Chem. 19, 1079–1084 (2011).

    Article  CAS  Google Scholar 

  26. Albrecht, S.C., Barata, A.G., Grosshans, J., Teleman, A.A. & Dick, T.P. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 14, 819–829 (2011).

    Article  CAS  Google Scholar 

  27. Lippert, A.R., Van de Bittner, G.C. & Chang, C.J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 44, 793–804 (2011).

    Article  CAS  Google Scholar 

  28. Chang, M.C., Pralle, A., Isacoff, E.Y. & Chang, C.J. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392–15393 (2004).

    Article  CAS  Google Scholar 

  29. Miller, E.W., Tulyathan, O., Isacoff, E.Y. & Chang, C.J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 3, 263–267 (2007).

    Article  CAS  Google Scholar 

  30. Dickinson, B.C., Huynh, C. & Chang, C.J. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).

    Article  CAS  Google Scholar 

  31. Miller, E.W., Dickinson, B.C. & Chang, C.J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA 107, 15681–15686 (2010).

    Article  CAS  Google Scholar 

  32. Dickinson, B.C., Tang, Y., Chang, Z. & Chang, C.J. A nuclear-localized fluorescent hydrogen peroxide probe for monitoring sirtuin-mediated oxidative stress responses in vivo. Chem. Biol. 18, 943–948 (2011).

    Article  CAS  Google Scholar 

  33. Murphy, M.P. & Smith, R.A. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 47, 629–656 (2007).

    Article  CAS  Google Scholar 

  34. Cocheme, H.M. et al. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 13, 340–350 (2011).

    Article  CAS  Google Scholar 

  35. Cocheme, H.sM. et al. Using the mitochondria-targeted ratiometric mass spectrometry probe MitoB to measure H2O2 in living Drosophila. Nat. Protoc. 7, 946–958 (2012).

    Article  CAS  Google Scholar 

  36. Lu, J. et al. S100B and APP promote a gliocentric shift and impaired neurogenesis in Down syndrome neural progenitors. PloS ONE 6, e22126 (2011).

    Article  CAS  Google Scholar 

  37. Woolley, J.F. et al. H2O2 production downstream of FLT3 is mediated by p22phox in the endoplasmic reticulum and is required for STAT5 signalling. PLoS ONE 7, e34050 (2012).

    Article  CAS  Google Scholar 

  38. Ohsaki, Y. et al. Increase of sodium delivery stimulates the mitochondrial respiratory chain H2O2 production in rat renal medullary thick ascending limb. Am J. Physiol. Renal. Physiol. 302, F95–F102 (2012).

    Article  CAS  Google Scholar 

  39. Sikora, A., Zielonka, J., Lopez, M., Joseph, J. & Kalyanaraman, B. Direct oxidation of boronates by peroxynitrite: mechanism and implications in fluorescence imaging of peroxynitrite. Free Radic. Biol. Med. 47, 1401–1407 (2009).

    Article  CAS  Google Scholar 

  40. Lin, T.K. et al. Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach. J. Biol. Chem. 277, 17048–17056 (2002).

    Article  CAS  Google Scholar 

  41. Chang, C.J. et al. ZP8, a neuronal zinc sensor with improved dynamic range; imaging zinc in hippocampal slices with two-photon microscopy. Inorg. Chem. 43, 6774–6779 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIH) (GM 79465). C.J.C. is an Investigator with the Howard Hughes Medical Institute. B.C.D. is a Fellow of the Jane Coffin Childs Memorial Fund for Medical Research. V.S.L. acknowledges Amgen for a graduate fellowship.

Author information

Authors and Affiliations

Authors

Contributions

B.C.D. and V.S.L. performed experiments. B.C.D., V.S.L. and C.J.C. designed experiments and wrote the paper.

Corresponding author

Correspondence to Christopher J Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, B., Lin, V. & Chang, C. Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat Protoc 8, 1249–1259 (2013). https://doi.org/10.1038/nprot.2013.064

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.064

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing