Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies

Abstract

This protocol describes the design and development of recombinant monovalent antigen-binding molecules derived from monoclonal antibodies through rapid identification and cloning of the functional variable heavy (VH) and variable light (VL) genes and the design and cloning of a synthetic DNA sequence optimized for expression in recombinant bacteria. Typically, monoclonal antibodies are obtained from mouse hybridomas, which most often result from the fusion of B lymphocytes from immunized mice with murine myeloma cells. The protocol described here has previously been exploited for the successful development of multiple antibody-based molecules targeting a wide range of biomolecular targets. The protocol is accessible for research groups who may not be specialized in this area, and should permit the straightforward reverse engineering of functional, recombinant antigen-binding molecules from hybridoma cells secreting functional IgGs within 50 working days. Furthermore, convenient strategies for purification of antibody fragments are described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IgG and recombinant antibody fragments.
Figure 2
Figure 3: Collier de Perles examples of antibody variable domains.
Figure 4: Highlight of the FR1 and FR4 most encountered amino acids for VH and V-κ chains.
Figure 5
Figure 6: Step-by-step expected results.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  Google Scholar 

  2. Nelson, A.L. & Reichert, J.M. Development trends for therapeutic antibody fragments. Nat. Biotechnol. 27, 331–337 (2009).

    Article  CAS  Google Scholar 

  3. Bird, R.E. et al. Single-chain antigen-binding proteins. Science 242, 423–426 (1988).

    Article  CAS  Google Scholar 

  4. Holliger, P. & Hudson, P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23, 1126–1136 (2005).

    Article  CAS  Google Scholar 

  5. Aubrey, N. et al. Engineering of a recombinant Fab from a neutralizing IgG directed against scorpion neurotoxin AahI and functional evaluation versus other antibody fragments. Toxicon 43, 233–241 (2004).

    Article  CAS  Google Scholar 

  6. Eisenhardt, S.U., Schwarz, M., Bassler, N. & Peter, K. Subtractive single-chain antibody (scFv) phage-display: tailoring phage-display for high specificity against function-specific conformations of cell membrane molecules. Nat. Protoc. 2, 3063–3073 (2007).

    Article  CAS  Google Scholar 

  7. Chapman, A.P. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. 54, 531–545 (2002).

    Article  CAS  Google Scholar 

  8. Zahid, M. et al. Design and reshaping of an scFv directed against human platelet glycoprotein VI with diagnostic potential. Anal. Biochem. 417, 274–282 (2011).

    Article  CAS  Google Scholar 

  9. Dubreuil, O. et al. Fine tuning of the specificity of an anti-progesterone antibody by first and second sphere residue engineering. J. Biol. Chem. 280, 24880–24887 (2005).

    Article  CAS  Google Scholar 

  10. Rouet, R. et al. Expression of high-affinity human antibody fragments in bacteria. Nat. Protoc. 7, 364–373 (2012).

    Article  CAS  Google Scholar 

  11. Muzard, J. et al. Design and humanization of a murine scFv that blocks human platelet glycoprotein VI in vitro. FEBS J. 276, 4207–4222 (2009).

    Article  CAS  Google Scholar 

  12. di Tommaso, A. et al. Diabody mixture providing full protection against experimental scorpion envenoming with crude Androctonus australis venom. J. Biol. Chem. 287, 14149–14156 (2012).

    Article  CAS  Google Scholar 

  13. Kontermann, R.E. Strategies to extend plasma half-lives of recombinant antibodies. Biodrugs 23, 93–109 (2009).

    Article  CAS  Google Scholar 

  14. Juste, M., Martin-Eauclaire, M.F., Devaux, C., Billiald, P. & Aubrey, N. Using a recombinant bispecific antibody to block Na+-channel toxins protects against experimental scorpion envenoming. Cell Mol. Life Sci. 64, 206–218 (2007).

    Article  CAS  Google Scholar 

  15. Aubrey, N. et al. Design and evaluation of a diabody to improve protection against a potent scorpion neurotoxin. Cell Mol. Life Sci. 60, 617–628 (2003).

    Article  CAS  Google Scholar 

  16. Nelson, A.L., Dhimolea, E. & Reichert, J.M. Development trends for human monoclonal antibody therapeutics. Nat. Rev. Drug Discov. 9, 767–774 (2010).

    Article  CAS  Google Scholar 

  17. Barbas III, C.F., Burton, D.R., Scott, J.K. & Silverman, G.J. Phage Display: A laboratory Manual (Cold Spring Harbor Laboratory Press, 2004).

  18. Grimm, S., Yu, F. & Nygren, P.A. Ribosome display selection of a murine IgG(1) Fab binding affibody molecule allowing species selective recovery of monoclonal antibodies. Mol. Biotechnonol. 48, 263–276 (2011).

    Article  CAS  Google Scholar 

  19. Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1, 755–768 (2006).

    Article  CAS  Google Scholar 

  20. Cotten, S.W., Zou, J., Valencia, C.A. & Liu, R. Selection of proteins with desired properties from natural proteome libraries using mRNA display. Nat. Protoc. 6, 1163–1182 (2011).

    Article  CAS  Google Scholar 

  21. Mazor, Y., Blarcom, T.V., Iverson, B.L. & Georgiou, G. E-clonal antibodies: selection of full-length IgG antibodies using bacterial periplasmic display. Nat. Protoc. 3, 1766–1777 (2008).

    Article  Google Scholar 

  22. Haque, A. & Tonks, K.T. The use of phage display to generate conformation-sensor recombinant antibodies. Nat. Protoc. 7, 2127–2143 (2012).

    Article  CAS  Google Scholar 

  23. Lee, C.M.Y., Iorno, N., Sierro, F. & Christ, D. Selection of human antibody fragments by phage display. Nat. Protoc. 2, 3001–3008 (2007).

    Article  CAS  Google Scholar 

  24. O'Connell, D., Becerril, B., Roy-Burman, A., Daws, M. & Marks, J.D. Phage versus phagemid libraries for generation of human monoclonal antibodies. J. Mol. Biol. 321, 49–56 (2002).

    Article  CAS  Google Scholar 

  25. Bourbeillon, J. et al. Minimum information about a protein affinity reagent (MIAPAR). Nat. Biotechnol. 28, 650–653 (2010).

    Article  CAS  Google Scholar 

  26. Borrebaeck, C.A.K. Antibody Engineering, 2nd edn. (Oxford University Press, 1994).

  27. Gustafsson, C., Govindarajan, S. & Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353 (2004).

    Article  CAS  Google Scholar 

  28. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: a Laboratory Manual 3rd edn. (eds. Sambrook, J. & Russell, D.W.) 11.98–11.133 (Cold Spring Harbor Laboratory Press, 2001).

  29. Muzard, J., Loyau, S., Ajzenberg, N., Billiald, P. & Jandrot-Perrus, M. Antithrombotic recombinant antibodies. J. Soc. Biol. 200, 365–376 (2006).

  30. McGregor, D.P., Molloy, P.E., Cunningham, C. & Harris, W.J. Spontaneous assembly of bivalent single chain antibody fragments in Escherichia coli. Mol. Immunol. 31, 219–226 (1994).

    Article  CAS  Google Scholar 

  31. Muzard, J. Recent patent applications in antibody fragments: an academic update from the EU. Nat. Biotechnol. 29, 979 (2011).

    Article  CAS  Google Scholar 

  32. Muzard, J., Fields, C., O'Mahony, J.J. & Lee, G.U. Probing the soybean Bowman Birk Inhibitor using recombinant antibody fragments. J. Agric. Food Chem. 60, 6164–6172 (2012).

    Article  CAS  Google Scholar 

  33. Kortt, A.A., Dolezal, O., Power, B.E. & Hudson, P.J. Dimeric and trimeric antibodies: high avidity scFvs for cancer targeting. Biomol. Eng. 18, 95–108 (2001).

    Article  CAS  Google Scholar 

  34. Muzard, J. et al. Grafting of protein L-binding activity onto recombinant antibody fragments. Anal Biochem. 388, 331–338 (2009).

    Article  CAS  Google Scholar 

  35. Juste, M., Muzard, J. & Billiald, P. Cloning of the antibody κ light chain V-gene from murine hybridomas by bypassing the aberrant MOPC21-derived transcript. Anal Biochem. 349, 159–161 (2006).

    Article  CAS  Google Scholar 

  36. Heo, M.A. et al. Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli. Protein Expr. Purif. 47, 203–209 (2006).

    Article  CAS  Google Scholar 

  37. Tolner, B., Smith, L., Begent, R.H.J. & Chester, K.A. Production of recombinant protein in Pichia pastoris by fermentation. Nat. Protoc. 1, 1006–1021 (2006).

    Article  CAS  Google Scholar 

  38. Hardiman, G. Next-generation antibody discovery platforms. Proc. Natl Acad. Sci. USA 109, 1824–1826 (2012).

    Article  Google Scholar 

  39. Kabat, E.A., Wu, T.T., Perry, H., Gottesman, G. & Foeller, C. Sequences of Proteins of Immunological Interest 5th edn. US Department of Health and Human Services, Public Health Service, National Institutes of Health (NIH): NIH publication no. 91-3242 (1991).

  40. Hornig, N. & Färber-Schwarz, A. Production of bispecific antibodies: diabodies and tandem scFv. Methods Mol. Biol. 907, 713–727 (2012).

    Article  CAS  Google Scholar 

  41. Ruberti, F., Cattaneo, A. & Bradbury, A. The use of the RACE method to clone hybridoma cDNA when V region primers fail. J. Immunol. Methods 173, 33–39 (1994).

    Article  CAS  Google Scholar 

  42. Kaas, Q. & Lefranc, M.P. IMGT Colliers de Perles: standardized sequence-structure representations of the IgSF and MhcSF superfamily domains. Curr. Bioinformatics 2, 21–30 (2007).

    Article  CAS  Google Scholar 

  43. Kaas, Q., Ehrenmanns, F. & Lefranc, M.P. IG, TR, MHC, IgSf and MhcSF: what do we learn from the IMGT Colliers de Perles? Brief. Funct. Genomic Proteomic. 6, 253–264 (2007).

    Article  CAS  Google Scholar 

  44. Honegger, A. & Plückthun, A. Yet another numbering scheme for immunoglobulin variable domains: An automatic modeling and analysis tool. J. Mol. Biol. 309, 657–670 (2001).

    Article  CAS  Google Scholar 

  45. Billiald, P., Motta, G. & Vaux, D.J. Production of a functional anti-scorpion hemocyanin scFv in Escherichia coli. Arch. Biochem. Biophys. 317, 429–438 (1995).

    Article  CAS  Google Scholar 

  46. Zhou, H., Fisher, R.J. & Papas, T.S. Optimization of primer sequences for mouse scFv repertoire display library construction. Nucleic Acids Res. 22, 888–889 (1994).

    Article  CAS  Google Scholar 

  47. Ortega, C. et al. High level prokaryotic expression of anti-Müllerian inhibiting substance type II receptor diabody, a new recombinant antibody for in vivo ovarian cancer imaging. J. Immunol. Methods 387, 11–20 (2013).

    Article  CAS  Google Scholar 

  48. Schaefer, J.V. & Plückthun, A. Improving expression of scFv fragments by co-expression of periplasmic chaperones. in Antibody Engineering 2nd edn. (eds. Kontermann, R. & Dübel, S.) 2, 345–361 (Springer, 2010).

    Article  Google Scholar 

  49. Vincze, T., Posfai, J. & Roberts, R.J. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res. 31, 3688–3691 (2003).

    Article  CAS  Google Scholar 

  50. Ehrenmann, F., Giudicelli, V., Duroux, P. & Lefranc, M.P. IMGT/Collier de Perles: IMGT standardized representation of domains (IG, TR, and IgSF variable and constant domains, MH and MhSF groove domains). Cold Spring Harbor Protoc. 6, 726–736 (2011).

    Google Scholar 

  51. Martin, A.C.R. Accessing the Kabat antibody sequence database by computer PROTEINS: Structure, Function and Genetics. Proteins 25, 130–133 (1996).

    Article  CAS  Google Scholar 

  52. Whitelegg, N.R.J. & Rees, A.R. WAM: an improved algorithm for modeling antibodies on the web. Protein Eng. 13, 819–824 (2000).

    Article  CAS  Google Scholar 

  53. Bruccoleri, R.E. Application of systematic conformational search to protein modelling. Mol. Simul. 10, 151–174 (1993).

    Article  CAS  Google Scholar 

  54. Sivasubramanian, A., Sircar, A., Chaudhury, S. & Gray, J.J. Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins 74, 497–514 (2009).

    Article  CAS  Google Scholar 

  55. Duhovny, D., Nussinov, R. & Wolfson, H.J. Efficient unbound docking of rigid molecules. in Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI), Rome, Italy; Lecture Notes in Computer Science (ed. Gusfield et al.) 2452, 185–200 (Springer, 2002).

    Article  Google Scholar 

  56. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.F., G.U.L. and J.M. were supported by the EU (MagPro2Life Consortium), Science Foundation Ireland (grant no. 08/IN/2972) and University College Dublin. D.O. was supported by Science Foundation Ireland (grant no. SFI12/IP/1260). P.B. was supported by grant no. 07-EMPB-002-01 from the Agence Nationale de la Recherche.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript is based on the protocols developed in our research laboratories from 2002 to 2013. All authors contributed to writing the manuscript and approved its final version.

Corresponding author

Correspondence to Julien Muzard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Annotated Fd chain sequences with native leader sequences, FR and CDR according to IMGT (continued line) and Kabat (dotted line) numbering schemes. (PDF 733 kb)

Supplementary Figure 2

Annotated light chain sequences with native leader sequences, FR and CDR according to IMGT (continued line) and Kabat (dotted line) numbering schemes. (PDF 719 kb)

Supplementary Figure 3

Example of a 3D Fv homology model generated using [Box 1, OR12-13]. (PDF 981 kb)

Supplementary Figure 4

Example of an epitope-paratope interaction prediction generated using [Box 1, OR12-13]. (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fields, C., O'Connell, D., Xiao, S. et al. Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc 8, 1125–1148 (2013). https://doi.org/10.1038/nprot.2013.057

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.057

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing