Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate and 4-acetamido-(2,2,6,6-tetramethyl-piperidin-1-yl)oxyl and their use in oxidative reactions

Abstract

We describe the synthesis of the lesser-known stoichiometric oxidation reagent 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate (1, Bobbitt's salt), as well as of 4-acetamido-(2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (2, AcNH-TEMPO). Several representative oxidation reactions are also presented to demonstrate the salt's oxidative capabilities. Bobbitt's salt has a range of applications, from the oxidation of various alcohols to their corresponding carbonyl derivatives to the oxidative cleavage of benzyl ethers, whereas 2 has been shown to serve as a catalytic or stoichiometric oxidant. The oxyl radical can be obtained in 85% yield over two steps on a 1-mole scale from commercially available 4-amino-2,2,6,6-tetramethylpiperidine (5), and is far more cost-effective to prepare in-house than purchase commercially. An additional step converts the oxyl radical into the oxoammonium salt (1, Bobbitt's salt) in 88% yield, with an overall yield of 75%. The synthesis of the salt takes 5 d to complete. Oxoammonium salts are metal-free, nontoxic and environmentally friendly oxidants. Preparation of 1 is also inherently ′green′, as water can be used as the solvent and the use of environmentally unfriendly materials is minimal. Moreover, after it has been used, the spent oxidant can be recovered and used to regenerate 1, thereby making the process recyclable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4: Photographs of the compounds prepared using this procedure.

Similar content being viewed by others

References

  1. Smith, M.B. & March, J. March's Advanced Organic Chemistry, 5th edn. Wiley, 2001.

  2. Bäckvall, J.-E. Modern Oxidation Methods. Wiley-VCH, 2004.

  3. Trost, B.M. & Fleming, I. Comprehensive Organic Synthesis: Selectivity, Strategy, and Efficiency in Modern Organic Chemistry. Oxford: Pergamon Press, 1991.

  4. Caron, S. Practical Synthetic Organic Chemistry: Reactions, Principles, and Techniques. Wiley-VCH, 2011.

  5. Bowden, K., Heilbron, I.M., Jones, E.R.H. & Weedon, B.C.L. Researches on acetylenic compounds. Part I. The preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols. J. Chem. Soc. 39–45 (1946).

  6. Tojo, G. & Fernández, M. Oxidation of Alcohols to Aldehydes and Ketones. Springer, 2006.

  7. Collins, J.C., Hess, W.W. & Frank, F.J. Dipyridine-chromium(VI) oxide oxidation of alcohols in dichloromethane. Tetrahedron Lett. 9, 3363–3366 (1968).

    Article  Google Scholar 

  8. Corey, E.J. & Suggs, J.W. Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett. 16, 2647–2650 (1975).

    Article  Google Scholar 

  9. Corey, E.J. & Schmidt, G. Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media. Tetrahedron Lett. 20, 399–402 (1979).

    Article  Google Scholar 

  10. Oppenauer, R.V. Eine Methode der Dehydrierung von Sekundären Alkoholen zu Ketonen. I. Zur Herstellung von Sterinketonen und Sexualhormonen. Recl. Trav. Chim. Pays-Bas 56, 137–145 (1937).

    Article  CAS  Google Scholar 

  11. Graves, C.R., Campbell, E.J. & Nguyen, S.T. Aluminum-based catalysts for the asymmetric Meerwein–Schmidt–Ponndorf–Verley–Oppenauer (MSPVO) reaction manifold. Tetrahedron: Asymmetry 16, 3460 (2005).

    Article  CAS  Google Scholar 

  12. Mandell, L. The mechanism of the Wettstein-Oppenauer oxidation. J. Am. Chem. Soc. 78, 3199–3201 (1956).

    Article  CAS  Google Scholar 

  13. Tidwell, T.T. Oxidation of alcohols to carbonyl compounds via alkoxysulfonium ylides: the Moffatt, Swern, and related oxidations. Org. React. 39, 297 (1990).

    CAS  Google Scholar 

  14. Mancuso, A.J., Huang, S.-L. & Swern, D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide 'activated' by oxalyl chloride. J. Org. Chem. 43, 2480–2482 (1978).

    Article  CAS  Google Scholar 

  15. Corey, E.J. & Kim, C.U. New and highly effective method for the oxidation of primary and secondary alcohols to carbonyl compounds. J. Am. Chem. Soc. 94, 7586–7587 (1972).

    Article  CAS  Google Scholar 

  16. Tidwell, T.T. Oxidation of alcohols by activated dimethyl sulfoxide and related reactions: an update. Synthesis 10, 857–870 (1990).

    Article  Google Scholar 

  17. Parikh, J.R. & Doering, W.v.E. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. J. Am. Chem. Soc. 89, 5505–5507 (1967).

    Article  CAS  Google Scholar 

  18. Ley, S.V., Norman, J., Griffith, W.P. & Marsden, S.P. Tetrapropylammonium perruthenate, Pr4N+RuO4, TPAP: a catalytic oxidant for organic synthesis. Synthesis 7, 639–666 (1994).

    Article  Google Scholar 

  19. Frigerio, M., Santagostino, M. & Sputore, S. A user-friendly entry to 2-iodoxybenzoic acid (IBX). J. Org. Chem. 64, 4537–4538 (1999).

    Article  CAS  Google Scholar 

  20. Frigerio, M. & Santagostino, M. A mild oxidizing reagent for alcohols and 1,2-diols: o-Iodoxybenzoic acid (IBX) in DMSO. Tetrahedron Lett. 35, 8019–8022 (1994).

    Article  CAS  Google Scholar 

  21. Duschek, A. & Kirsch, S.F. 2-Iodoxybenzoic acid—a simple oxidant with a dazzling array of potential applications. Angew. Chem. Int. Ed. 50, 1524–1552 (2011).

    Article  CAS  Google Scholar 

  22. Dess, D.B. & Martin, J.C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J. Org. Chem. 48, 4155–4156 (1983).

    Article  CAS  Google Scholar 

  23. Tohma, H. & Kita, Y. Hypervalent iodine reagents for the oxidation of alcohols and their application to complex molecule synthesis. Adv. Synth. Catal. 346, 111 (2004).

    Article  CAS  Google Scholar 

  24. Cohen, M.D., Kargacin, B., Klein, C.B. & Costa, M. Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol. 23, 255–281 (1993).

    Article  CAS  Google Scholar 

  25. Tilley, L.J., Bobbitt, J.M., Murray, S.A., Camire, C.E. & Eddy, N.A. A revised preparation of 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl and 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium tetrafluoroborate: reagents for stoichiometric oxidations of alcohols. Synthesis 45, 326–329 (2013).

    CAS  Google Scholar 

  26. Bobbitt, J.M. & Flores, C.L. Organic nitrosonium salts as oxidants in organic chemistry. Heterocycles 27, 509–533 (1988).

    Article  CAS  Google Scholar 

  27. Shibuya, M., Tomizawa, M. & Iwabuchi, Y. Oxidative rearrangement of tertiary allylic alcohols employing oxoammonium salts. J. Org. Chem. 73, 4750–4752 (2008).

    Article  CAS  Google Scholar 

  28. Bobbitt, J.M. Oxoammonium salts. 6. 4-Acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium perchlorate: a stable and convenient reagent for the oxidation of alcohols. Silica gel catalysis. J. Org. Chem. 63, 9367–9374 (1998).

    Article  CAS  Google Scholar 

  29. Bobbitt, J.M. & Merbouh, N. Preparation of 4-acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate, and the oxidation of geraniol to geranial. Org. Synth. 82, 80–86 (2005).

    Article  CAS  Google Scholar 

  30. Bailey, W.F., Bobbitt, J.M. & Wiberg, K.B. Mechanism of the oxidation of alcohols by oxoammonium cations. J. Org. Chem. 72, 4504–4509 (2007).

    Article  CAS  Google Scholar 

  31. Qui, J., Pradhan, P.P., Blanck, N.B., Bobbitt, J.M. & Bailey, W.F. Selective oxoammonium salt oxidations of alcohols to aldehydes and aldehydes to carboxylic acids. Org. Lett. 14, 350–353 (2012).

    Article  Google Scholar 

  32. Bobbitt, J.M., Bruckner, C. & Merbouh, N. Oxoammonium- and nitroxide-catalyzed oxidations of alcohols. Org. React. 74, 103–427 (2010).

    Google Scholar 

  33. Pradhan, P.P., Bobbitt, J.M. & Bailey, W.F. Oxidative cleavage of benzylic and related ethers, using an oxoammonium salt. J. Org. Chem. 74, 9524–9527 (2009).

    Article  CAS  Google Scholar 

  34. Merbouh, N., Bobbitt, J.M. & Bruckner, C. Oxoammonium Salts. 9. Oxidative dimerization of polyfunctional primary alcohols to esters. An interesting β oxygen effect. J. Org. Chem. 69, 5116–5119 (2004).

    Article  CAS  Google Scholar 

  35. Zakrzewski, J., Grodner, J., Bobbitt, J.M. & Karpiáska, M. Oxidation of unsaturated primary alcohols and ω-haloalkanols with 4-acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate. Synthesis 16, 2491–2494 (2007).

    Article  Google Scholar 

  36. Kelly, C.B., Mercadante, M.A., Hamlin, T.A., Fletcher, M.H. & Leadbeater, N.E. Oxidation of α-trifluoromethyl alcohols using a recyclable oxoammonium salt. J. Org. Chem. 77, 8131–8141 (2012).

    Article  CAS  Google Scholar 

  37. Shibuya, M., Tomizawa, M., Suzuki, I. & Iwabuchi, Y. 2-Azaadamantane N-Oxyl (AZADO) and 1-Me-AZADO: highly efficient organocatalysts for oxidation of alcohols. J. Am. Chem. Soc. 128, 8412–8413.

  38. Tojo, G. & Fernandez, M.I. Oxidation of Primary Alcohols to Carboxylic Acids: A Guide to Current Common Practice, 1st edn. Springer, 2007.

  39. Sheldon, R.A., Arends, I.W.C.E., ten Brink, G.-J. & Dijksman, A. Green, catalytic oxidations of alcohols. Acc. Chem. Res. 35, 774–781 (2002).

    Article  CAS  Google Scholar 

  40. Ciriminna, R. & Pagliaro, M. Industrial oxidations with organocatalyst TEMPO and its derivatives. Org. Process Res. Dev. 14, 245–251 (2010).

    Article  CAS  Google Scholar 

  41. Anelli, P.L., Montanari, F. & Quici, S. A general synthetic method for the oxidation of primary alcohols to aldehydes: (S)-(+)-2-Methylbutanal. Org. Synth. 69, 212–219 (1990).

    Article  CAS  Google Scholar 

  42. Anelli, P.L., Biffi, C., Montanari, F. & Quici, S. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions. J. Org. Chem. 52, 2559–2562 (1987).

    Article  Google Scholar 

  43. Anelli, P.L., Banfi, S., Montanari, F. & Quici, S. Oxidation of diols with alkali hypochlorites catalyzed by oxammonium salts under two-phase conditions. J. Org. Chem. 54, 2970–2972 (1989).

    Article  CAS  Google Scholar 

  44. Ma, Z. & Bobbitt, J.M. Organic oxoammonium salts. 3. A new convenient method for the oxidation of alcohols to aldehydes and ketones. J. Org. Chem. 56, 6110–6614 (1991).

    Article  CAS  Google Scholar 

  45. Banwell, M.G., Bridges, V.S., Dupuche, J.R., Richards, S.L. & Walter, J.M. Oxidation of vic-Diols to .alpha.-dicarbonyl compounds using the oxoammonium salt derived from 4-acetamido-TEMPO and p-toluenesulfonic acid. J. Org. Chem. 59, 6338–6343 (1994).

    Article  CAS  Google Scholar 

  46. Eddy, N.A., Kelly, C.B., Mercadante, M.A., Leadbeater, N.E. & Fenteany, G. Access to dienophilic ene-triketone synthons by oxidation of diketones with an oxoammonium salt. Org. Lett. 14, 498–501 (2012).

    Article  CAS  Google Scholar 

  47. Pradhan, P.P., Bobbitt, J.M. & Bailey, W.F. Ene-like addition of an oxoammonium cation to alkenes: highly selective route to allylic alkoxyamines. Org. Lett. 8, 5485–5487 (2006).

    Article  CAS  Google Scholar 

  48. Richter, H. & García-Mancheño, O. Dehydrogenative functionalization of C(sp3)-H bonds adjacent to a heteroatom mediated by oxoammonium salts. Eur. J. Org. Chem. 2010, 4460–4467 (2010).

    Google Scholar 

  49. Farkas, L. & Lewin, M. Analysis of hypochlorite-hypobromite solutions. Anal. Chem. 19, 662–664 (1947).

    Article  CAS  Google Scholar 

  50. Adler, N., Litt, G.J. & Johl, R.G. Coulometric titration of hypochlorite ion. Anal. Chem. 39, 226–227 (1967).

    Article  Google Scholar 

  51. Hashmi, M.H., Rashid, A., Ayaz, A.A. & Chughtai, N.A. Indirect determination of hypochlorite and hypobromite by thallium. Anal. Chem. 38, 507–508 (1966).

    Article  CAS  Google Scholar 

  52. Richter, H., Rohlmann, R. & García-Mancheño, O. Catalyzed selective direct α- and γ-alkylation of aldehydes with cyclic benzyl ethers by using T+BF4 in the presence of an inexpensive organic acid or anhydride. Chem. Eur. J. 17, 11622–11627 (2011).

    Article  CAS  Google Scholar 

  53. Richter, H. & García-Mancheño, O. TEMPO Oxoammonium salt-mediated dehydrogenative Povarov/oxidation tandem reaction of N-alkyl anilines. Org. Lett. 13, 6066–6069 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.E.L. coordinated the project. C.B.K., M.A.M., J.M.B. and L.J.T. performed the reactions. C.B.K., M.A.M. and N.E.L. wrote the manuscript.

Corresponding author

Correspondence to Nicholas E Leadbeater.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercadante, M., Kelly, C., Bobbitt, J. et al. Synthesis of 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate and 4-acetamido-(2,2,6,6-tetramethyl-piperidin-1-yl)oxyl and their use in oxidative reactions. Nat Protoc 8, 666–676 (2013). https://doi.org/10.1038/nprot.2013.028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.028

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing