Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Tracking recent adaptive evolution in microbial species using TimeZone

Abstract

An important goal of the analysis of sequenced genomes of microbial pathogens is to improve the therapy of infectious diseases. In this context, a major challenge is to detect genomic-level evolutionary changes that increase microbial virulence. TimeZone, a genome analysis software package, is designed to detect footprints of positive selection for functionally adaptive point mutations. The uniqueness of TimeZone lies in its ability to predict recent adaptive mutations that are overlooked by conventional microevolutionary tools. This protocol describes the use of TimeZone to analyze adaptive footprints in either individual genes or in sets of genomes. Three major workflows are described: (i) extraction of orthologous gene sets from multiple genomes; (ii) alignment and phylogenetic analysis of genes; and (iii) identification of candidate genes under positive selection for point mutations, taking into account the effect of recombination events. This software package can be downloaded free from http://sourceforge.net/projects/timezone1/. In the case, for example, of the analysis of 14 Escherichia coli genomes, the protocol described here can be completed in 32 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of 'source-sink' dynamics.
Figure 3: Example of a zonal phylogeny tree.
Figure 4: Protein phylogram reporting different types of convergent or hotspot mutations along the phylogeny branches.
Figure 2
Figure 5
Figure 6: Screenshots of TimeZone run commands.
Figure 7
Figure 8: Distribution of the nature of hotspot mutations in recombinant and nonrecombinant genes, as inferred from the analysis of sequencing data on 14 genomes of E. coli strains27, respectively.

Similar content being viewed by others

References

  1. Gomez-Duarte, O.G. et al. Genetic diversity of the gene cluster encoding longus, a type IV pilus of enterotoxigenic Escherichia coli. J. Bacteriol. 189, 9145–9149 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Korotkova, N. et al. Selection for functional diversity drives accumulation of point mutations in Dr adhesins of Escherichia coli. Mol. Microbiol. 64, 180–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Weissman, S.J. et al. Clonal analysis reveals high rate of structural mutations in fimbrial adhesins of extraintestinal pathogenic Escherichia coli. Mol. Microbiol. 59, 975–988 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, W. et al. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. Genome Res. 16, 757–767 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Golding, G.B. & Dean, A.M. The structural basis of molecular adaptation. Mol. Biol. Evol. 15, 355–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Pallen, M.J. & Wren, B.W. Bacterial pathogenomics. Nature 449, 835–842 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 15, 568–573 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Z. & Nielsen, R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19, 908–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Chattopadhyay, S., Dykhuizen, D.E. & Sokurenko, E.V. ZPS: visualization of recent adaptive evolution of proteins. BMC Bioinformatics 8, 187 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Totsika, M., Beatson, S.A., Holden, N. & Gally, D.L. Regulatory interplay between pap operons in uropathogenic Escherichia coli. Mol. Microbiol. 67, 996–1011 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Weissman, S.J. et al. High-resolution two-locus clonal typing of extraintestinal pathogenic Escherichia coli. Appl. Environ. Microbiol. 78, 1353–1360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dennis, G. Jr. et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3 (2003).

    Article  PubMed  Google Scholar 

  13. Sokurenko, E.V. et al. Selection footprint in the FimH adhesin shows pathoadaptive niche differentiation in Escherichia coli. Mol. Biol. Evol. 21, 1373–1383 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Chattopadhyay, S. et al. Haplotype diversity in 'source-sink' dynamics of Escherichia coli urovirulence. J. Mol. Evol. 64, 204–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hughes, A.L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Christin, P.-A., Weinreich, D.M. & Besnard, G. Causes and evolutionary significance of genetic convergence. Trends Genet. 26, 400–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Chattopadhyay, S. et al. Adaptive evolution of class 5 fimbrial genes in enterotoxigenic Escherichia coli and its functional consequences. J. Biol. Chem. 287, 6150–6158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kisiela, D.I. et al. Convergent evolution of invasive serovars of Salmonella enterica via point mutations in the type 1 fimbrial adhesion FimH. PLoS Pathog. 8, e1002733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith, J.M. Analyzing the mosaic structure of genes. J. Mol. Evol. 34, 126–129 (1992).

    CAS  PubMed  Google Scholar 

  21. Weiller, G.F. Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Mol. Biol. Evol. 15, 326–335 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Bush, R.M., Smith, C.B., Cox, N.J. & Fitch, W.M. Effects of passage history and sampling bias on phylogenetic reconstruction of human influenza A evolution. Proc. Natl Acad. Sci. USA 97, 6974–6980 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fitch, W.M., Bush, R.M., Bender, C.A. & Cox, N.J. Long term trends in the evolution of H(3) HA1 human influenza type A. Proc. Natl Acad. Sci. USA 94, 7712–7718 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).

    CAS  PubMed  Google Scholar 

  25. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu, Y.X. & Li, W.H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chattopadhyay, S. et al. High frequency of hotspot mutations in core genes of Escherichia coli due to short-term positive selection. Proc. Natl Acad. Sci. USA 106, 12412–12417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chattopadhyay, S., Paul, S., Kisiela, D.I., Linardopoulou, E.V. & Sokurenko, E.V. Convergent molecular evolution of genomic cores in Salmonella enterica and Escherichia coli. J. Bacteriol. 194, 5002–5011 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chattopadhyay, S., Paranjpye, R.N., Dykhuizen, D.E., Sokurenko, E.V. & Strom, M.S. Comparative evolutionary analysis of the major structural subunit of Vibrio vulnificus type IV pili. Mol. Biol. Evol. 26, 2185–2196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Giacani, L. et al. Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen. PLoS Negl. Trop. Dis. 6, e1698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paul, S. et al. Role of homologous recombination in adaptive diversification of extra-intestinal Escherichia coli. J. Bacteriol. 195, 231–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swofford, D.L. PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods (software) (Sinauer Associates, 2000).

  34. Morrison, D.A. Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic analysis of up to 150 nucleotide sequences. Syst. Biol. 56, 988–1010 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Efron, B. Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1–26 (1979).

    Article  Google Scholar 

  36. Graham, J., McNeney, B. & Seillier-Moiseiwitsch, F. Stepwise detection of recombination breakpoints in sequence alignments. Bioinformatics 21, 589–595 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Sokurenko, E.V., Gomulkiewicz, R. & Dykhuizen, D.E. Source-sink dynamics of virulence evolution. Nat. Rev. Microbiol. 4, 548–555 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge S. Moseley (University of Washington) for critical reading of the manuscript and helpful advice. This work was supported by US National Institutes of Health (NIH) grants R01 GM084318 and RC4 AI092828.

Author information

Authors and Affiliations

Authors

Contributions

S.C. designed the protocol, wrote scripts, performed analyses and wrote the manuscript. S.P. tested and developed the protocol, and performed analyses. D.E.D. revised the manuscript. E.V.S. conceived the protocol and wrote the manuscript.

Corresponding author

Correspondence to Sujay Chattopadhyay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, S., Paul, S., Dykhuizen, D. et al. Tracking recent adaptive evolution in microbial species using TimeZone. Nat Protoc 8, 652–665 (2013). https://doi.org/10.1038/nprot.2013.031

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.031

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology