Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Large-scale and chromatography-free synthesis of an octameric quinoline-based aromatic amide helical foldamer

Abstract

The synthesis of helical aromatic oligoamide foldamers derived from 8-amino-2-quinolinecarboxylic acid is described. The precursors are commercially available and products up to and including the octamer are obtained. The procedure covers the synthesis of the monomer, reduction of N-terminal nitro groups into amines, saponification of C-terminal methyl esters to form carboxylic acids, and coupling of amines and acids to form amides via acid chloride activation. Emphasis is given to how these reactions can be scaled up and how purification can be greatly simplified using recrystallization methods, thus providing considerable improvements over previously described procedures. As an illustration of the improvement, 8.4 g of an octamer can now reliably be prepared from a nitro-ester monomer in a matter of 8 (working) weeks without any chromatography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Preparation of the monomer.
Figure 4: Preparation of the monomer acid chloride.
Figure 5: Preparation of the dimer amine.
Figure 6: Preparation of the dimer acid chloride.
Figure 7: Preparation of the tetramer amine.
Figure 8: Preparation of the hexamer amine.
Figure 9: Products of coupling reactions.
Figure 10
Figure 11: Part of the 1H-NMR spectra (25 °C, CDCl3, 300 MHz) showing the amide and aromatic proton resonances of tetramer amine 10.

Similar content being viewed by others

References

  1. Zhang, D.-W., Zhao, X., Hou, J.-L. & Li, Z.-T. Aromatic amide foldamers: structures, properties, and functions. Chem. Rev. 112, 5271–5316 (2012).

    Article  CAS  Google Scholar 

  2. Saraogi, I. & Hamilton, A.D. Recent advances in the development of aryl-based foldamers. Chem. Soc. Rev. 38, 1726–1743 (2009).

    Article  CAS  Google Scholar 

  3. Huc, I. Aromatic oligoamide foldamers. Eur. J. Org. Chem. 2004, 17–29 (2004).

    Article  Google Scholar 

  4. Gong, B. Crescent oligoamides: from acyclic 'macrocycles' to folding nanotubes. Chem. Eur. J. 7, 4336–4342 (2001).

    Article  CAS  Google Scholar 

  5. Hamuro, Y., Geib, S.J. & Hamilton, A.D. Novel folding patterns in a family of oligoanthranilamides: non-peptide oligomers that form extended helical secondary structures. J. Am. Chem. Soc. 119, 10587–10593 (1997).

    Article  CAS  Google Scholar 

  6. Jiang, H., Léger, J. & Huc, I. Aromatic δ-peptides. J. Am. Chem. Soc. 125, 3448–3449 (2003).

    Article  CAS  Google Scholar 

  7. Gong, B. et al. Creating nanocavities of tunable sizes: hollow helices. Proc. Natl. Acad. Sci. USA 99, 11583–11588 (2002).

    Article  CAS  Google Scholar 

  8. Feng, W. et al. Efficient kinetic macrocyclization. J. Am. Chem. Soc. 131, 2629–2637 (2009).

    Article  CAS  Google Scholar 

  9. Ferguson, J.S. et al. One-pot formation of large macrocycles with modifiable peripheries and internal cavities. Angew. Chem. Int. Ed. 48, 3150–3154 (2009).

    Article  CAS  Google Scholar 

  10. Berl, V., Huc, I., Khoury, R.G., Krische, M.J. & Lehn, J.-M. Interconversion of single and double helices formed from synthetic molecular strands. Nature 407, 720–723 (2000).

    Article  CAS  Google Scholar 

  11. Ferrand, Y., Kendhale, A.M., Garric, J., Kauffmann, B. & Huc, I. Parallel and antiparallel triple helices of naphthyridine oligoamides. Angew. Chem. Int. Ed. 49, 1778–1781 (2010).

    Article  CAS  Google Scholar 

  12. Gan, Q. et al. Quadruple and double helices of 8-fluoroquinoline oligoamides. Angew. Chem. Int. Ed. 47, 1715–1718 (2008).

    Article  CAS  Google Scholar 

  13. Hamuro, Y., Geib, S.J. & Hamilton, A.D. Oligoanthranilamides. Non-peptide subunits that show formation of specific secondary structure. J. Am. Chem. Soc. 118, 7529–7541 (1996).

    Article  CAS  Google Scholar 

  14. Zhu, J. et al. Hydrogen-bonding-induced planar, rigid, and Zigzag oligoanthranilamides. synthesis, characterization, and self-assembly of a metallocyclophane. J. Org. Chem. 69, 6221–6227 (2004).

    Article  CAS  Google Scholar 

  15. Zeng, H., Miller, S.R., Flowers, R.A. & Gong, B. A highly stable, six-hydrogen-bonded molecular duplex. J. Am. Chem. Soc. 122, 2635–2644 (2000).

    Article  CAS  Google Scholar 

  16. Maurizot, V. et al. Design of an inversion center between two helical segments. J. Am. Chem. Soc. 126, 10049–10052 (2004).

    Article  CAS  Google Scholar 

  17. Delsuc, N., Massip, S., Léger, J.M., Kauffmann, B. & Huc, I. Relative helix-helix conformations in branched aromatic oligoamide foldamers. J. Am. Chem. Soc. 133, 3165–3172 (2011).

    Article  CAS  Google Scholar 

  18. Hu, H.-Y., Xiang, J.-F., Yang, Y. & Chen, C.-F. A helix-turn-helix supersecondary structure based on oligo(phenanthroline dicarboxamide)s. Org. Lett. 10, 69–72 (2008).

    Article  CAS  Google Scholar 

  19. Delsuc, N. et al. Metal-directed dynamic formation of tertiary structure in foldamer assemblies: orienting helices at an angle. Chem. Eur. J. 14, 7140–7143 (2008).

    Article  CAS  Google Scholar 

  20. Bao, C.-Y. et al. Converting sequences of aromatic amino acid monomers into functional three-dimensional structures: second-generation helical capsules. Angew. Chem. Int. Ed. 47, 4153–4156 (2008).

    Article  CAS  Google Scholar 

  21. Ferrand, Y. et al. Long-range effects on the capture and release of a chiral guest by a helical molecular capsule. J. Am. Chem. Soc. 134, 11282–11288 (2012).

    Article  CAS  Google Scholar 

  22. Delsuc, N., Godde, F., Kauffmann, B., Léger, J.-M. & Huc, I. The herringbone helix: a noncanonical folding in aromatic-aliphatic peptides. J. Am. Chem. Soc. 129, 11348–11349 (2007).

    Article  CAS  Google Scholar 

  23. Liu, D. et al. Nontoxic membrane-active antimicrobial arylamide oligomers. Angew. Chem. Int. Ed. 116, 1158–1162 (2004).

    Article  Google Scholar 

  24. Choi, S. et al. The design and evaluation of heparin-binding foldamers. Angew. Chem. Int. Ed. 44, 6685–6689 (2005).

    Article  CAS  Google Scholar 

  25. Saraogi, I. et al. Synthetic α-helix mimetics as agonists and antagonists of islet amyloid polypeptide aggregation. Angew. Chem. Int. Ed. 122, 748–751 (2010).

    Article  Google Scholar 

  26. Plante, J.P. et al. Oligobenzamide proteomimetic inhibitors of the p53-hDM2 protein-protein interaction. Chem. Comm. 34, 5091–5093 (2009).

    Article  Google Scholar 

  27. Gillies, E.R., Deiss, F., Staedel, C., Schmitter, J.-M. & Huc, I. Development and biological assessment of fully water-soluble helical aromatic amide foldamers. Angew. Chem. Int. Ed. 46, 4081–4084 (2007).

    Article  CAS  Google Scholar 

  28. Iriondo-Alberdi, J., Laxmi-Reddy, K., Bouguerne, B., Staedel, C. & Huc, I. Cellular internalization of water-soluble helical aromatic amide foldamers. ChemBioChem 11, 1679–1685 (2010).

    Article  CAS  Google Scholar 

  29. Shirude, P.S. et al. Macrocyclic and helical oligoamides as a new class of G-quadruplex ligands. J. Am. Chem. Soc. 129, 11890–11891 (2007).

    Article  CAS  Google Scholar 

  30. Delaurière, L. et al. Deciphering aromatic oligoamide foldamer-DNA interactions. Angew. Chem. Int. Ed. 51, 473–477 (2012).

    Article  Google Scholar 

  31. Sánchez-García, D. et al. Nanosized hybrid oligoamide foldamers: aromatic templates for the folding of multiple aliphatic units. J. Am. Chem. Soc. 131, 8642–8648 (2009).

    Article  Google Scholar 

  32. Qi, T. et al. Solvent dependence of helix stability in aromatic oligoamide foldamers. Chem. Commun. 51, 6337–6339 (2012).

    Article  Google Scholar 

  33. Baptiste, B., Douat-Casassus, C., Laxmi-Reddy, K., Godde, F. & Huc, I. Solid phase synthesis of aromatic oligoamides: application to helical water-soluble foldamers. J. Org. Chem. 75, 7175–7185 (2010).

    Article  CAS  Google Scholar 

  34. Kulikov, O.V. & Hamilton, A.D. Synthesis of the novel trimeric benzamides—potential inhibitors of protein-protein interactions. RSC Adv. 2, 2454–2461 (2012).

    Article  CAS  Google Scholar 

  35. Delsuc, N. et al. Kinetics of helix-handedness inversion: folding and unfolding in aromatic amide oligomers. Chemphyschem 9, 1882–1890 (2008).

    Article  CAS  Google Scholar 

  36. Zhang, A., Ferguson, J.S., Yamato, K., Zheng, C. & Gong, B. Improving foldamer synthesis through protecting group induced unfolding of aromatic oligoamides. Org. Lett. 8, 5117–5120 (2006).

    Article  CAS  Google Scholar 

  37. Srinivas, K. et al. Remote substituent effects and regioselective enhancement of electrophilic substitutions in helical aromatic oligoamides. J. Am. Chem. Soc. 130, 13210–13211 (2008).

    Article  CAS  Google Scholar 

  38. Jiang, H., Léger, J.-M., Dolain, C., Guionneau, P. & Huc, I. Aromatic δ-peptides: design, synthesis and structural studies of helical, quinoline-derived oligoamide foldamers. Tetrahedron 5, 8365–8374 (2003).

    Article  Google Scholar 

  39. Baumeister, P., Blaser, H.-U. & Studer, M. Strong reduction of hydroxylamine accumulation during hydrogenation of nitroarenes, using vanadium promoters. Cat. Lett. 49, 219–222 (1997).

    Article  CAS  Google Scholar 

  40. Ghosez, L., Haveaux, B. & Viehe, H.G. Alkyl and aryl α-chloro enamines. Angew. Chem. Int. Ed. Engl. 8, 454–455 (1969).

    Article  CAS  Google Scholar 

  41. Pangborn, A.B., Giardello, M.A., Grubbs, R.H., Rosen, R.K. & Timmers, F.J. Safe and convenient procedure for solvent purification. Organometallics 15, 1518–1520 (1996).

    Article  CAS  Google Scholar 

  42. Peet, N.P., Baugh, L.E., Sunder, S. & Lewis, J.E. Synthesis and antiallergic activity of some quinolinones and imidazoquinolinones. J. Med. Chem. 28, 298–302 (1985).

    Article  CAS  Google Scholar 

  43. Dolain, C. et al. Solution structure of quinoline- and pyridine-derived oligoamide foldamers. Chem. Eur. J. 11, 6135–6144 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Agence Nationale de la Recherche (ANR) contract ANR-07-PCVI-0037, by Marie Curie Contract IIF-2009-254156 (postdoctoral fellowship to T.Q.) and by Association pour la Recherche Contre le Cancer (ARC) (postdoctoral fellowship to T.D.).

Author information

Authors and Affiliations

Authors

Contributions

T.D. and T.Q. contributed equally to this work. They carried out and optimized experiments, interpreted the results and wrote the manuscript. I.H. interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Ivan Huc.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data

Analytical data for compounds 1–15 (PDF 3282 kb)

Supplementary Figure 1

1H NMR spectrum for compound 1 (PDF 927 kb)

Supplementary Figure 2

1H NMR spectrum for compound 2 (PDF 834 kb)

Supplementary Figure 3

1H NMR spectrum for compound 3 (PDF 926 kb)

Supplementary Figure 4

1H NMR spectrum for compound 4 (PDF 916 kb)

Supplementary Figure 5

1H NMR spectrum for compound 5 (PDF 1068 kb)

Supplementary Figure 6

1H NMR spectrum for compound 6 (PDF 1005 kb)

Supplementary Figure 7

1H NMR spectrum for compound 7 (PDF 1082 kb)

Supplementary Figure 8

1H NMR spectrum for compound 8 (PDF 1121 kb)

Supplementary Figure 9

1H NMR spectrum for compound 9 (PDF 1413 kb)

Supplementary Figure 10

1H NMR spectrum for compound 10 (PDF 1304 kb)

Supplementary Figure 11

1H NMR spectrum for compound 11 (PDF 1400 kb)

Supplementary Figure 12

1H NMR spectrum for compound 12 (PDF 1418 kb)

Supplementary Figure 13

1H NMR spectrum for compound 13 (PDF 1502 kb)

Supplementary Figure 14

1H NMR spectrum for compound 14 (PDF 988 kb)

Supplementary Figure 15

1H NMR spectrum for compound 15 (PDF 892 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, T., Deschrijver, T. & Huc, I. Large-scale and chromatography-free synthesis of an octameric quinoline-based aromatic amide helical foldamer. Nat Protoc 8, 693–708 (2013). https://doi.org/10.1038/nprot.2013.029

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.029

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing