Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Cellular, subcellular and functional in vivo labeling of the spinal cord using vital dyes

Abstract

Here we provide a protocol for rapidly labeling different cell types, distinct subcellular compartments and key injury mediators in the spinal cord of living mice. This method is based on the application of synthetic vital dyes to the surgically exposed spinal cord. Suitable vital dyes applied in appropriate concentrations lead to reliable in vivo labeling, which can be combined with genetic tags and in many cases preserved for postfixation analysis. In combination with in vivo imaging, this approach allows the direct observation of central nervous system physiology and pathophysiology at the cellular, subcellular and functional level. Surgical exposure and preparation of the spinal cord can be achieved in less than 1 h, and then dyes need to be applied for 30–60 min before the labeled spinal cord can be imaged for several hours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Removal of the meninges.
Figure 2: Concentration dependence of vital dye labeling.
Figure 3: Reliability of relabeling using vital dyes.
Figure 4: Structural dyes.
Figure 5: Functional dyes.
Figure 6: Typical results from the Thy1-YFP-16 mouse.

Similar content being viewed by others

References

  1. Lichtman, J.W. & Fraser, S.E. The neuronal naturalist: watching neurons in their native habitat. Nat. Neurosci. 4 (suppl.) 1215–1220 (2001).

    Article  CAS  Google Scholar 

  2. Misgeld, T. & Kerschensteiner, M. In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 7, 449–463 (2006).

    Article  CAS  Google Scholar 

  3. Kerschensteiner, M. et al. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat. Med. 11, 572–577 (2005).

    Article  CAS  Google Scholar 

  4. Ertürk, A. et al. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J. Neurosci. 27, 9169–9180 (2007).

    Article  Google Scholar 

  5. Debarbieux, F. et al. Quantitative analysis by in vivo imaging of the dynamics of vascular and axonal networks in injured mouse spinal cord. Proc. Natl. Acad. Sci. USA 106, 9459–9464 (2009).

    Article  Google Scholar 

  6. Bartholomäus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    Article  Google Scholar 

  7. Nikic, I. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17, 495–499 (2011).

    Article  CAS  Google Scholar 

  8. Siffrin, V. et al. In vivo imaging of partially reversible TH17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33, 424–436 (2010).

    Article  CAS  Google Scholar 

  9. Denk, W. et al. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  10. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 12, 932–940 (2005).

    Article  Google Scholar 

  11. Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).

    Article  Google Scholar 

  12. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  Google Scholar 

  13. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  Google Scholar 

  14. Zhao, Y. et al. An expanded palette of genetically encoded Ca(2) indicators. Science 333, 1888–1891 (2011).

    Article  CAS  Google Scholar 

  15. Stosiek, C. et al. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  Google Scholar 

  16. Johannssen, H.C. & Helmchen, F. In vivo Ca2+ imaging of dorsal horn neuronal populations in mouse spinal cord. J. Physiol. 588, 3397–3402 (2010).

    Article  CAS  Google Scholar 

  17. Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–865 (2012).

    Article  CAS  Google Scholar 

  18. Balice-Gordon, R.J. & Lichtman, J.W. In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse. J. Neurosci. 10, 894–908 (1990).

    Article  CAS  Google Scholar 

  19. Akaaboune, M. et al. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 286, 503–507 (1999).

    Article  CAS  Google Scholar 

  20. Magrassi, L., Purves, D. & Lichtman, J.W. Fluorescent probes that stain living nerve terminals. J. Neurosci. 7, 1207–1214 (1987).

    Article  CAS  Google Scholar 

  21. Lichtman, J.W., Magrassi, L. & Purves, D. Visualization of neuromuscular junctions over periods of several months in living mice. J. Neurosci. 7, 1215–1222 (1987).

    Article  CAS  Google Scholar 

  22. Nimmerjahn, A., Kirchhoff, F., Kerr, J.N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    Article  CAS  Google Scholar 

  23. Nimmerjahn, A., Mukamel, E.A. & Schnitzer, M.J. Motor behaviour activates Bergmann glial networks. Neuron 62, 400–412 (2009).

    Article  CAS  Google Scholar 

  24. Davalos, D. et al. Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. J. Neurosci. Methods 169, 1–7 (2008).

    Article  Google Scholar 

  25. Davalos, D. & Akassoglou, K. In vivo imaging of the mouse spinal cord using two-photon microscopy. J. Vis. Exp. 59, e2760 (2012).

    Google Scholar 

  26. Misgeld, T., Nikic, I. & Kerschensteiner, M. In vivo imaging of single axons in the mouse spinal cord. Nat. Protoc. 2, 263–268 (2007).

    Article  CAS  Google Scholar 

  27. Farrar, M.J. et al. Chronic in vivo imaging in the mouse spinal cord using an implanted chamber. Nat. Methods 9, 297–302 (2012).

    Article  CAS  Google Scholar 

  28. Fenrich, K.K. et al. Long-term in vivo imaging of normal and pathological mouse spinal cord with subcellular resolution using implanted glass windows. J. Physiol. 590, 3665–3675 (2012).

    Article  CAS  Google Scholar 

  29. Feng, G. et al. Imaging neuronal subsets intransgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  30. Schwendele, B., Brawek, B., Hermes, M. & Garaschuk, O. High-resolution in vivo imaging of microglia using a versatile nongenetically encoded marker. Eur. J. Immunol. 42, 2193–2196 (2012).

    Article  CAS  Google Scholar 

  31. Leone, D. et al. Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol. Cell. Neurosci. 22, 430–440 (2003).

    Article  CAS  Google Scholar 

  32. Fancy, S.P. et al. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat. Neurosci. 14, 1009–1016 (2011).

    Article  CAS  Google Scholar 

  33. Ogata, K. & Kosaka, T. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113, 221–233 (2002).

    Article  CAS  Google Scholar 

  34. Streit, W.J. & Kreutzberg, G.W. Lectin binding by resting and reactive microglia. J Neurocytol. 16, 249–260 (1987).

    Article  CAS  Google Scholar 

  35. Moreira, T.J. et al. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells. J. Cereb. Blood Flow Metab. 29, 1273–1283 (2009).

    Article  CAS  Google Scholar 

  36. Dailey, M.E. & Waite, M. Confocal imaging of microglial cell dynamics in hippocampal slice cultures. Methods 18, 222–230 (1999).

    Article  CAS  Google Scholar 

  37. Watkins, T.A. et al. Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60, 555–569 (2008).

    Article  CAS  Google Scholar 

  38. Monsma, P.C. & Brown, A. FluoroMyelin Red is a bright, photostable and non-toxic fluorescent stain for live imaging of myelin. J. Neurosci. Methods 209, 344–50 (2012).

    Article  CAS  Google Scholar 

  39. Misgeld, T. et al. Imaging axonal transport of mitochondria in vivo. Nat. Methods 7, 559–561 (2007).

    Article  Google Scholar 

  40. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Heitmann for excellent technical assistance and D. Matzek for animal husbandry. Work in M.K.'s laboratory is financed through grants from the European Research Council (ERC Starting Grant), and the Deutsche Forschungsgemeinschaft (DFG; Sonderforschungsbereiche (SFB) 571, SFB 870 and SFB-Tr 128), the German Federal Ministry of Research and Education (Competence Network Multiple Sclerosis) and the 'Verein Therapieforschung für MS-Kranke e.V.' T.M. is supported by the Institute of Advanced Studies (Technische Universität München), the Alexander von Humboldt Foundation, the Center for Integrated Protein Science (Munich), the DFG (SFB 596) and the German Center for Neurodegenerative Disease (DZNE Munich). Work on this project was further supported by the national funding agency ('Bundesministerium für Bildung und Forschung') in the frame of ERA-Net '2-photon imaging' (T.M.) and a grant from the DANA foundation to M.K. and T.M. C.D.S. was supported by the Graduate School of Technische Universität München (TUM-GS).

Author information

Authors and Affiliations

Authors

Contributions

M.K., T.M., E.R., C.D.S. and I.N. conceived the experiments. E.R., C.D.S., I.N. and A.D. performed imaging experiments and image analysis. M.K., T.M., E.R., C.D.S. and I.N. wrote the protocol.

Corresponding author

Correspondence to Martin Kerschensteiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanelli, E., Sorbara, C., Nikić, I. et al. Cellular, subcellular and functional in vivo labeling of the spinal cord using vital dyes. Nat Protoc 8, 481–490 (2013). https://doi.org/10.1038/nprot.2013.022

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.022

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing