Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A three-stage biophysical screening cascade for fragment-based drug discovery

Abstract

This protocol describes the screening of a library of low-molecular-weight compounds (fragments) using a series of biophysical ligand-binding assays. Fragment-based drug discovery (FBDD) has emerged as a successful method to design high-affinity ligands for biomacromolecules of therapeutic interest. It involves detecting relatively weak interactions between the fragments and a target macromolecule using sensitive biophysical techniques. These weak binders provide a starting point for the development of inhibitors with submicromolar affinity. Here we describe an efficient fragment screening cascade that can identify binding fragments (hits) within weeks. It is divided into three stages: (i) preliminary screening using differential scanning fluorimetry (DSF), (ii) validation by NMR spectroscopy and (iii) characterization of binding fragments by isothermal titration calorimetry (ITC) and X-ray crystallography. Although this protocol is readily applicable in academic settings because of its emphasis on low cost and medium-throughput early-stage screening technologies, the core principle of orthogonal validation makes it robust enough to meet the quality standards of an industrial laboratory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A three-stage fragment screening cascade for efficient fragment selection.
Figure 2: Images of library plate preparation and storage.
Figure 3: DSF melt curves in the presence of binding and non-binding fragments.
Figure 4: NMR spectra for ligand-observed experiments.
Figure 5: Spectra for ligand-observed NMR displacement experiment with CPMG.
Figure 6: Isothermal titration calorimetry titrations for strongly and weakly binding ligands.
Figure 7: Structure of 5-methoxyindole (green) showing hydrogen bonding to the protein and a sulfate ion in the active of pantothenate synthetase (PtS)4.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Murray, C.W. & Rees, D.C. The rise of fragment-based drug discovery. Nat. Chem. 1, 187–192 (2009).

    Article  CAS  Google Scholar 

  2. Ciulli, A. & Abell, C. Fragment-based approaches to enzyme inhibition. Curr. Opin. Biotechnol. 18, 489–496 (2007).

    Article  CAS  Google Scholar 

  3. Congreve, M., Carr, R., Murray, C. & Jhoti, H. A 'rule of three' for fragment-based lead discovery? Drug Discov. Today 8, 876–877 (2003).

    Article  Google Scholar 

  4. Hung, A. et al. Application of fragment growing and fragment linking to the discovery of inhibitors of Mycobacterium tuberculosis pantothenate synthetase. Angew. Chem. Int. Ed. 48, 8452–8456 (2009).

    Article  CAS  Google Scholar 

  5. Hudson, S.A. et al. Application of fragment screening and merging to the discovery of inhibitors of the Mycobacterium tuberculosis cytochrome P450 CYP121. Angew. Chem. Int. Ed. 51, 9311–9316 (2012).

    Article  CAS  Google Scholar 

  6. Hajduk, P.J. et al. Design of adenosine kinase inhibitors from the NMR-based screening of fragments. J. Med. Chem. 43, 4781–4786 (2000).

    Article  CAS  Google Scholar 

  7. Gill, A., Cleasby, A. & Jhoti, H. The discovery of novel protein kinase inhibitors by using fragment-based high-throughput X-ray crystallography. Chembiochem. 6, 506–512 (2005).

    Article  CAS  Google Scholar 

  8. Liu, G. et al. Fragment screening and assembly: a highly efficient approach to a selective and cell active protein tyrosine phosphatase 1B inhibitor. J. Med. Chem. 46, 4232–4235 (2003).

    Article  CAS  Google Scholar 

  9. Chen, L., Cressina, E., Leeper, F.J., Smith, A.G. & Abell, C. A fragment-based approach to identifying ligands for riboswitches. ACS Chem. Biol. 5, 355–358 (2010).

    Article  CAS  Google Scholar 

  10. Petros, A.M. et al. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J. Med. Chem. 49, 656–663 (2006).

    Article  CAS  Google Scholar 

  11. Scott, D.E. et al. Using a fragment-based approach to target protein-protein interactions. Chembiochem. 14, 332–342 (2013).

    Article  CAS  Google Scholar 

  12. FDA approves vemurafenib for treatment of metastatic melanoma. Oncology 25, 906 (2011).

  13. Baker, M. Fragment-based lead discovery grows up. Nat. Rev. Drug Discov. 12, 5–7 (2012).

    Article  Google Scholar 

  14. Erlanson, D. (Ed.) Practical Fragmentshttp://practicalfragments.blogspot.com/〉.

  15. Chessari, G. & Woodhead, A.J. From fragment to clinical candidate-a historical perspective. Drug Discov. Today 14, 668–675 (2009).

    Article  CAS  Google Scholar 

  16. Scott, D.E., Coyne, A.G., Hudson, S.A. & Abell, C. Fragment-based approaches in drug discovery and chemical biology. Biochemistry 51, 4990–5003 (2012).

    Article  CAS  Google Scholar 

  17. Śledź, P., Abell, C. & Ciulli, A. Ligand-observed NMR in fragment-based approaches. in NMR of Biomolecules: Towards Mechanistic Systems Biology 1st edn. (eds. Bertini, I., McGreevy, K.S. & Parigi, G.), 265–281 (Wiley-VCH, 2012).

  18. Kranz, J.K. & Schalk-Hihi, C. Protein thermal shifts to identify low molecular weight fragments. Methods Enzymol. 493, 277–298 (2011).

    Article  CAS  Google Scholar 

  19. Hartshorn, M.J. et al. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem. 48, 403–413 (2005).

    Article  CAS  Google Scholar 

  20. Blundell, T.L., Jhoti, H. & Abell, C. High-throughput crystallography for lead discovery in drug design. Nat. Rev. Drug Discov. 1, 45–54 (2002).

    Article  CAS  Google Scholar 

  21. Navratilova, I. & Hopkins, A.L. Fragment screening by surface plasmon resonance. ACS Med. Chem. Lett. 1, 44–48 (2010).

    Article  CAS  Google Scholar 

  22. Hofstadler, S.A. & Sannes-Lowery, K.A. Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat. Rev. Drug Discov. 5, 585–595 (2006).

    Article  CAS  Google Scholar 

  23. Arkin, M.R. & Wells, J.A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317 (2004).

    Article  CAS  Google Scholar 

  24. Śledź, P., Lang, S., Stubbs, C.J. & Abell, C. High-throughput interrogation of ligand binding mode using a fluorescence-based assay. Angew. Chem. Int. Ed. 51, 7680–7683 (2012).

    Article  Google Scholar 

  25. Śledź, P. et al. From crystal packing to molecular recognition: prediction and discovery of a binding site on the surface of polo-like kinase 1. Angew. Chem. Int. Ed. 50, 4003–4006 (2011).

    Article  Google Scholar 

  26. Tan, Y.S. et al. Using ligand-mapping simulations to design a ligand selectively targeting a cryptic surface pocket of polo-like kinase 1. Angew. Chem. Int. Ed. 51, 10078–10081 (2012).

    Article  CAS  Google Scholar 

  27. Schuffenhauer, A. et al. Library design for fragment based screening. Curr. Top Med. Chem. 5, 751–762 (2005).

    Article  CAS  Google Scholar 

  28. Siegal, G., Ab, E. & Schultz, J. Integration of fragment screening and library design. Drug Discov. Today 12, 1032–1039 (2007).

    Article  CAS  Google Scholar 

  29. Hung, A.W. et al. Route to three-dimensional fragments using diversity-oriented synthesis. Proc. Natl. Acad. Sci. USA 108, 6799–6804 (2011).

    Article  CAS  Google Scholar 

  30. Over, B. et al. Natural-product-derived fragments for fragment-based ligand discovery. Nat. Chem. 5, 21–28 (2013).

    Article  CAS  Google Scholar 

  31. Tounge, B.A. & Parker, M.H. Designing a diverse high-quality library for crystallography-based FBDD screening. Methods Enzymol. 493, 3–20 (2011).

    Article  CAS  Google Scholar 

  32. Davis, B.J. & Erlanson, D.A. Learning from our mistakes: the 'unknown knowns' in fragment screening. Bioorg. Med. Chem. Lett. 2, 2844–2852 (2013).

    Article  Google Scholar 

  33. Alsenz, J. & Kansy, M. High throughput solubility measurement in drug discovery and development. Adv. Drug Delivery Rev. 59, 546–567 (2007).

    Article  CAS  Google Scholar 

  34. Kozikowski, B.A. et al. The effect of freeze/thaw cycles on the stability of compounds in DMSO. J. Biomol. Screen 8, 210–215 (2003).

    Article  CAS  Google Scholar 

  35. Poklar, N., Lah, J., Salobir, M., Macek, P. & Vesnaver, G. pH and temperature-induced molten globule-like denatured states of equinatoxin II: a study by UV-melting, DSC, far- and near-UV CD spectroscopy, and ANS fluorescence. Biochemistry 36, 14345–14352 (1997).

    Article  CAS  Google Scholar 

  36. Pantoliano, M.W. et al. High-density miniaturized thermal shift assays as a general strategy for drug discovery. J. Biomol. Screen 6, 429–440 (2001).

    Article  CAS  Google Scholar 

  37. Lo, M.-C. et al. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal. Biochem. 332, 153–159 (2004).

    Article  CAS  Google Scholar 

  38. Niesen, F.H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 (2007).

    Article  CAS  Google Scholar 

  39. Zhang, R. & Monsma, F. Fluorescence-based thermal shift assays. Curr. Opin. Drug Discov. Devel. 13, 389–402 (2010).

    CAS  PubMed  Google Scholar 

  40. Ericsson, U.B., Hallberg, B.M., Detitta, G.T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 357, 289–298 (2006).

    Article  CAS  Google Scholar 

  41. Tjernberg, A., Markova, N., Griffiths, W.J. & Hallen, D. DMSO-related effects in protein characterization. J. Biomol. Screen 11, 131–137 (2006).

    Article  CAS  Google Scholar 

  42. Shuker, S.B., Hajduk, P.J., Meadows, R.P. & Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  Google Scholar 

  43. Lepre, C.A., Moore, J.M. & Peng, J.W. Theory and applications of NMR-based screening in pharmaceutical research. Chem. Rev. 104, 3641–3676 (2004).

    Article  CAS  Google Scholar 

  44. Jhoti, H., Cleasby, A., Verdonk, M. & Williams, G. Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr. Opin. Chem. Biol. 11, 485–493 (2007).

    Article  CAS  Google Scholar 

  45. Mayer, M. & Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 38, 1784–1788 (1999).

    Article  CAS  Google Scholar 

  46. Dalvit, C., Fogliatto, G., Stewart, A., Veronesi, M. & Stockman, B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J. Biomol. NMR 21, 349–359 (2001).

    Article  CAS  Google Scholar 

  47. Carr, Y.H. & Purcell, M.E. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954).

    Article  CAS  Google Scholar 

  48. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

    Article  CAS  Google Scholar 

  49. Pellecchia, M. et al. Perspectives on NMR in drug discovery: a technique comes of age. Nat. Rev. Drug Discov. 7, 738–745 (2008).

    Article  CAS  Google Scholar 

  50. Dalvit, C. NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov. Today 14, 1051–1057 (2009).

    Article  CAS  Google Scholar 

  51. Angulo, J. & Nieto, P.M. STD-NMR: application to transient interactions between biomolecules-a quantitative approach. Eur. Biophys. J. 40, 1357–1369 (2011).

    Article  CAS  Google Scholar 

  52. Dalvit, C. et al. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J. Biomol. NMR 18, 65–68 (2000).

    Article  CAS  Google Scholar 

  53. Hajduk, P.J., Olejniczak, E.T. & Fesik, S.W. One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J. Am. Chem. Soc. 119, 12257–12261 (1997).

    Article  CAS  Google Scholar 

  54. Leavitt, S. & Freire, E. Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol. 11, 560–566 (2001).

    Article  CAS  Google Scholar 

  55. Turnbull, W.B. & Daranas, A.H. On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125, 14859–14866 (2003).

    Article  CAS  Google Scholar 

  56. Lewis, E.A. & Murphy, K.P. Isothermal titration calorimetry. Methods Mol. Biol. 305, 1–16 (2005).

    CAS  PubMed  Google Scholar 

  57. Ladbury, J.E. Calorimetry as a tool for understanding biomolecular interactions and an aid to drug design. Biochem. Soc. Trans. 38, 888–893 (2010).

    Article  CAS  Google Scholar 

  58. Ladbury, J.E., Klebe, G. & Freire, E. Adding calorimetric data to decision making in lead discovery: a hot tip. Nat. Rev. Drug Discov. 9, 23–27 (2010).

    Article  CAS  Google Scholar 

  59. Śledź, P. et al. Optimization of the interligand Overhauser effect for fragment linking: application to inhibitor discovery against Mycobacterium tuberculosis pantothenate synthetase. J. Am. Chem. Soc. 132, 4544–4545 (2012).

    Article  Google Scholar 

  60. Good, N.E. et al. Hydrogen ion buffers for biological research. Biochemistry 5, 467–477 (1966).

    Article  CAS  Google Scholar 

  61. Hwang, T.L. & Shaka, A.J. Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. Ser. A 112, 275–279 (1995).

    Article  CAS  Google Scholar 

  62. McNicholas, S., Potterton, E., Wilson, K.S. & Noble, M.E.M. Presenting your structures: the CCP4mg molecular-graphics software. Acta. Crystallogr. D Biol. Crystallogr. 67, 386–394 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E.H.M. acknowledges the NIH-Cambridge Graduate Partnership Program and C. Barry (Tuberculosis Research Section, NIAID, NIH). P.Ś. thanks the Gates Cambridge Trust and St. Edmund's College for funding. S.L. thanks the German Academic Exchange Service (DAAD) and the Structural Genomics Consortium, Oxford. We thank G. Williams (Astex Pharmaceuticals) and all members of the Abell, Blundell, Hyvönen and Ciulli groups for useful discussions. This research was supported in part by the Intramural Research Program of the NIH, NIAID.

Author information

Authors and Affiliations

Authors

Contributions

C.A. initiated the project and supervised the work. E.H.M., P.Ś. and S.L. developed and formulated the protocol. E.H.M., P.Ś. and C.A. wrote the paper.

Corresponding author

Correspondence to Chris Abell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mashalidis, E., Śledź, P., Lang, S. et al. A three-stage biophysical screening cascade for fragment-based drug discovery. Nat Protoc 8, 2309–2324 (2013). https://doi.org/10.1038/nprot.2013.130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.130

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing