Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes

Abstract

The jellyfish Aequorea victoria produces a 22-kDa protein named aequorin that has had an important role in the study of calcium (Ca2+) signaling. Aequorin reacts with Ca2+ via oxidation of the prosthetic group, coelenterazine, which results in emission of light. This signal can be detected by using a special luminescence reader (called aequorinometer) or luminescence plate readers. Here we describe the main characteristics of aequorin as a Ca2+ probe and how to measure Ca2+ in different intracellular compartments of animal cells (cytosol, different mitochondrial districts, nucleus, endoplasmic reticulum (ER), Golgi apparatus, peroxisomes and subplasma-membrane cytosol), ranging from single-well analyses to high-throughput screening by transfecting animal cells using DNA vectors carrying recombinant aequorin chimeras. The use of aequorin mutants and modified versions of coelenterazione increases the range of calcium concentrations that can be recorded. Cell culture and transfection takes 3 d. An experiment including signal calibration and the subsequent analyses will take 1 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Setup of an aequorin experiment.
Figure 2: Setup of the aequorin plate-reader assay.
Figure 3: Aequorin calibration into [Ca2+] values.
Figure 4: Measurements of Ca2+ in different cellular compartments.

Similar content being viewed by others

References

  1. Clapham, D.E. Calcium signaling. Cell 131, 1047–1058 (2007).

    Article  CAS  Google Scholar 

  2. Berridge, M.J., Bootman, M.D. & Roderick, H.L. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  3. Rizzuto, R. & Pozzan, T. When calcium goes wrong: genetic alterations of a ubiquitous signaling route. Nat. Genet. 34, 135–141 (2003).

    Article  CAS  Google Scholar 

  4. Pinton, P. et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J. Cell Biol. 148, 857–862 (2000).

    Article  CAS  Google Scholar 

  5. Marchi, S. et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr. Biol. 23, 58–63 (2013).

    Article  CAS  Google Scholar 

  6. Shimomura, O., Johnson, F.H. & Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell Comp. Physiol. 59, 223–239 (1962).

    Article  CAS  Google Scholar 

  7. Shimomura, O. Isolation and properties of various molecular forms of aequorin. Biochem. J. 234, 271–277 (1986).

    Article  CAS  Google Scholar 

  8. Johnsn, F.H. & Shimomura, O. Preparation and use of aequorin for rapid microdetermination of Ca2+ in biological systems. Nat. New Biol. 237, 287–288 (1972).

    Article  CAS  Google Scholar 

  9. Allen, D.G. & Blinks, J.R. Calcium transients in aequorin-injected frog cardiac muscle. Nature 273, 509–513 (1978).

    Article  CAS  Google Scholar 

  10. Robert, V., Pinton, P., Tosello, V., Rizzuto, R. & Pozzan, T. Recombinant aequorin as tool for monitoring calcium concentration in subcellular compartments. Methods Enzymol. 327, 440–456 (2000).

    Article  CAS  Google Scholar 

  11. Chiesa, A. et al. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochem. J. 355, 1–12 (2001).

    Article  CAS  Google Scholar 

  12. Shimomura, O., Musicki, B., Kishi, Y. & Inouye, S. Light-emitting properties of recombinant semi-synthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium. Cell Calcium 14, 373–378 (1993).

    Article  CAS  Google Scholar 

  13. Kendall, J.M., Sala-Newby, G., Ghalaut, V., Dormer, R.L. & Campbell, A.K. Engineering the Ca2+-activated photoprotein aequorin with reduced affinity for calcium. Biochem. Biophys. Res. Commun. 187, 1091–1097 (1992).

    Article  CAS  Google Scholar 

  14. de la Fuente, S., Fonteriz, R.I., de la Cruz, P.J., Montero, M. & Alvarez, J. Mitochondrial free [Ca2+] dynamics measured with a novel low-Ca2+ affinity aequorin probe. Biochem. J. 445, 371–376 (2012).

    Article  CAS  Google Scholar 

  15. Brini, M. et al. Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+]c). A critical evaluation. J. Biol. Chem. 270, 9896–9903 (1995).

    Article  CAS  Google Scholar 

  16. Sorrentino, G. et al. The prolyl-isomerase Pin1 activates the mitochondrial death program of p53. Cell Death Differ. 20, 198–208 (2013).

    Article  CAS  Google Scholar 

  17. Lasorsa, F.M. et al. Peroxisomes as novel players in cell calcium homeostasis. J. Biol. Chem. 283, 15300–15308 (2008).

    Article  CAS  Google Scholar 

  18. Pinton, P., Pozzan, T. & Rizzuto, R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J. 17, 5298–5308 (1998).

    Article  CAS  Google Scholar 

  19. Barrero, M.J., Montero, M. & Alvarez, J. Dynamics of [Ca2+] in the endoplasmic reticulum and cytoplasm of intact HeLa cells. A comparative study. J. Biol. Chem. 272, 27694–27699 (1997).

    Article  CAS  Google Scholar 

  20. Alonso, M.T., Chamero, P., Villalobos, C. & Garcia-Sancho, J. Fura-2 antagonises calcium-induced calcium release. Cell Calcium 33, 27–35 (2003).

    Article  CAS  Google Scholar 

  21. Schoenmakers, T.J., Visser, G.J., Flik, G. & Theuvenet, A.P. CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. Biotechniques 12, 870–874, 876–879 (1992).

    CAS  PubMed  Google Scholar 

  22. Markova, S.V. et al. The light-sensitive photoprotein berovin from the bioluminescent ctenophore Beroe abyssicola: a novel type of Ca2+ -regulated photoprotein. FEBS J. 279, 856–870 (2012).

    Article  CAS  Google Scholar 

  23. Markova, S.V. et al. Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins. Biochemistry 41, 2227–2236 (2002).

    Article  CAS  Google Scholar 

  24. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R.Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl. Acad. Sci. USA 96, 2135–2140 (1999).

    Article  CAS  Google Scholar 

  25. Garaschuk, O., Griesbeck, O. & Konnerth, A. Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium 42, 351–361 (2007).

    Article  CAS  Google Scholar 

  26. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    Article  CAS  Google Scholar 

  27. Nagai, T., Sawano, A., Park, E.S. & Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA 98, 3197–3202 (2001).

    Article  CAS  Google Scholar 

  28. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    Article  CAS  Google Scholar 

  29. Thomas, D. et al. A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28, 213–223 (2000).

    Article  CAS  Google Scholar 

  30. Blatter, L.A. & Wier, W.G. Intracellular diffusion, binding, and compartmentalization of the fluorescent calcium indicators indo-1 and fura-2. Biophys. J. 58, 1491–1499 (1990).

    Article  CAS  Google Scholar 

  31. Brini, M. et al. Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin. EMBO J. 12, 4813–4819 (1993).

    Article  CAS  Google Scholar 

  32. Rizzuto, R., Simpson, A.W., Brini, M. & Pozzan, T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358, 325–327 (1992).

    Article  CAS  Google Scholar 

  33. Montero, M. et al. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat. Cell Biol. 2, 57–61 (2000).

    Article  CAS  Google Scholar 

  34. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  Google Scholar 

  35. Marsault, R., Murgia, M., Pozzan, T. & Rizzuto, R. Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells. EMBO J. 16, 1575–1581 (1997).

    Article  CAS  Google Scholar 

  36. Montero, M. et al. Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J. 14, 5467–5475 (1995).

    Article  CAS  Google Scholar 

  37. Brini, M. et al. Subcellular analysis of Ca2+ homeostasis in primary cultures of skeletal muscle myotubes. Mol. Biol. Cell 8, 129–143 (1997).

    Article  CAS  Google Scholar 

  38. Mitchell, K.J. et al. Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J. Cell Biol. 155, 41–51 (2001).

    Article  CAS  Google Scholar 

  39. Ashworth, R. & Brennan, C. Use of transgenic zebrafish reporter lines to study calcium signalling in development. Brief Funct. Genomic Proteomic. 4, 186–193 (2005).

    Article  CAS  Google Scholar 

  40. Ainscow, E.K. & Rutter, G.A. Mitochondrial priming modifies Ca2+ oscillations and insulin secretion in pancreatic islets. Biochem. J. 353, 175–180 (2001).

    Article  CAS  Google Scholar 

  41. Alonso, M.T. et al. Functional measurements of [Ca2+] in the endoplasmic reticulum using a herpes virus to deliver targeted aequorin. Cell Calcium 24, 87–96 (1998).

    Article  CAS  Google Scholar 

  42. Rembold, C.M., Kendall, J.M. & Campbell, A.K. Measurement of changes in sarcoplasmic reticulum [Ca2+] in rat tail artery with targeted apoaequorin delivered by an adenoviral vector. Cell Calcium 21, 69–79 (1997).

    Article  CAS  Google Scholar 

  43. Le Poul, E. et al. Adaptation of aequorin functional assay to high-throughput screening. J. Biomol. Screen. 7, 57–65 (2002).

    Article  CAS  Google Scholar 

  44. Menon, V. et al. Development of an aequorin luminescence calcium assay for high-throughput screening using a plate reader, the LumiLux. Assay Drug Dev. Technol. 6, 787–793 (2008).

    Article  CAS  Google Scholar 

  45. Giorgi, C. et al. Translocation of signalling proteins to the plasma membrane revealed by a new bioluminescent procedure. BMC Cell Biol. 12, 27 (2011).

    Article  CAS  Google Scholar 

  46. Cobbold, P.H., Cuthbertson, K.S., Goyns, M.H. & Rice, V. Aequorin measurements of free calcium in single mammalian cells. J. Cell Sci. 61, 123–136 (1983).

    CAS  PubMed  Google Scholar 

  47. Creton, R., Steele, M.E. & Jaffe, L.F. Expression of apo-aequorin during embryonic development; how much is needed for calcium imaging? Cell Calcium 22, 439–446 (1997).

    Article  CAS  Google Scholar 

  48. Webb, S.E., Rogers, K.L., Karplus, E. & Miller, A.L. The use of aequorins to record and visualize Ca2+ dynamics: from subcellular microdomains to whole organisms. Methods Cell Biol. 99, 263–300 (2010).

    Article  CAS  Google Scholar 

  49. Torrecilla, I., Leganes, F., Bonilla, I. & Fernandez-Pinas, F. Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacteria. Plant Physiol. 123, 161–176 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Italian Association for Cancer Research (AIRC), Telethon (GGP11139B), local funds from the University of Ferrara, the Italian Ministry of Education, University and Research (COFIN, FIRB and Futuro in Ricerca) and Italian Ministry of Health to P.P.; by Italian Ministry of Health to A.R.; by AIRC to C.G.; by grants from the Italian Ministries of Health and of Education, University and Research, the European Union (ERC mitoCalcium, no. 294777 and FP7 'MyoAGE', no. 223576), US National Institutes of Health (grant no. 2P01AG025532-06A1), Cariparo Foundation (Padua), Cariplo (no. 2012-06-46), AIRC and Telethon-Italy (GPP1005A, GGP11082) to R.R. S.M. was supported by a FIRC fellowship. S.P. was supported by a research fellowship FISM (Cod. 2012/B/11).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. M.B., C.G., A.B., S.M. and A.R. performed experiments; M.B., C.G., A.B., S.M., A.R., R.R. and P.P. analyzed data; and M.B., C.G. and P.P. wrote the paper.

Corresponding author

Correspondence to Paolo Pinton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonora, M., Giorgi, C., Bononi, A. et al. Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 8, 2105–2118 (2013). https://doi.org/10.1038/nprot.2013.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing