Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Adapting human pluripotent stem cells to high-throughput and high-content screening

Abstract

The increasing use of human pluripotent stem cells (hPSCs) as a source of cells for drug discovery, cytotoxicity assessment and disease modeling requires their adaptation to large-scale culture conditions and screening formats. Here, we describe a simple and robust protocol for the adaptation of human embryonic stem cells (hESCs) to high-throughput screening (HTS). This protocol can also be adapted to human induced pluripotent stem cells (hiPSCs) and high-content screening (HCS). We also describe a 7-d assay to identify compounds with an effect on hESC self-renewal and differentiation. This assay can be adapted to a variety of applications. The procedure involves the culture expansion of hESCs, their adaptation to 384-well plates, the addition of small molecules or other factors, and finally data acquisition and processing. In this protocol, the optimal number of hESCs plated in 384-well plates has been adapted to HTS/HCS assays of 7 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall screening procedure.
Figure 2: hESCs at different stages of the assay.
Figure 3: Cell loss after suboptimal staining procedure.
Figure 4: Expected phenotypes for small-molecule regulators of hESC self-renewal, differentiation or death.

Similar content being viewed by others

References

  1. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  Google Scholar 

  2. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 105, 2883–2888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Jensen, J., Hyllner, J. & Bjorquist, P. Human embryonic stem cell technologies and drug discovery. J. Cell Physiol. 219, 513–519 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Eglen, R. & Reisine, T. Primary cells and stem cells in drug discovery: emerging tools for high-throughput screening. Assay Drug Dev. Technol. 9, 108–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Dimos, J.T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Abeliovich, A. & Doege, C.A. Reprogramming therapeutics: iPS cell prospects for neurodegenerative disease. Neuron 61, 337–339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wernig, M. et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl. Acad. Sci. USA 105, 5856–5861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, G.H. et al. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8, 688–694 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Batista, L.F. et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474, 399–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brennand, K.J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen, H.N., Byers, B. & Cord, B. et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267–280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang, J. & Ng, H.H. TGF-β and SMADs talk to NANOG in human embryonic stem cells. Cell Stem Cell 3, 127–128 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J.A. & Kosik, K.S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Hoffman, L.M. & Carpenter, M.K. Characterization and culture of human embryonic stem cells. Nat. Biotechnol. 23, 699–708 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ludwig, T.E. et al. Feeder-independent culture of human embryonic stem cells. Nat. Methods 3, 637–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Bendall, S.C. et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448, 1015–1021 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Hasegawa, K., Fujioka, T., Nakamura, Y., Nakatsuji, N. & Suemori, H. A method for the selection of human embryonic stem cell sublines with high replating efficiency after single-cell dissociation. Stem Cells 24, 2649–2660 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Bajpai, R., Lesperance, J., Kim, M. & Terskikh, A.V. Efficient propagation of single cells Accutase-dissociated human embryonic stem cells. Mol. Reprod. Dev. 75, 818–827 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Ellerstrom, C., Strehl, R., Noaksson, K., Hyllner, J. & Semb, H. Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells 25, 1690–1696 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. Baker, D.E. et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25, 207–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Phillips, B.W. et al. Attachment and growth of human embryonic stem cells on microcarriers. J. Biotechnol. 138, 24–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Lock, L.T. & Tzanakakis, E.S. Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng. Part A 15, 2051–2063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nie, Y., Bergendahl, V., Hei, D.J., Jones, J.M. & Palecek, S.P. Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol. Prog. 25, 20–31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh, S.K. et al. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res. 2, 219–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Thomas, R.J. et al. Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol. Bioeng. 102, 1636–1644 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Serra, M. et al. Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J. Biotechnol. 148, 208–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Fernandes, A.M. et al. Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz. J. Med. Biol. Res. 42, 515–522 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Steiner, D. et al. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat. Biotechnol. 28, 361–364 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Joannides, A. et al. Automated mechanical passaging: a novel and efficient method for human embryonic stem cell expansion. Stem Cells 24, 230–235 (2006).

    Article  PubMed  Google Scholar 

  42. Terstegge, S. et al. Automated maintenance of embryonic stem cell cultures. Biotechnol. Bioeng. 96, 195–201 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Melkoumian, Z. et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 28, 606–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Rodin, S. et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat. Biotechnol. 28, 611–615 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Villa-Diaz, L.G. et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat. Biotechnol. 28, 581–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Amit, M. et al. Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat. Protoc. 6, 572–579 (2010).

    Article  CAS  Google Scholar 

  47. Olmer, R. et al. Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res. 5, 51–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Zweigerdt, R., Olmer, R., Singh, H., Haverich, A. & Martin, U. Scalable expansion of human pluripotent stem cells in suspension culture. Nat. Protoc. 6, 689–700 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Firestone, A.J. & Chen, J.K. Controlling destiny through chemistry: small-molecule regulators of cell fate. ACS Chem. Biol. 5, 15–34 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Kochegarov, A. Small molecules for stem cells. Expert Opin. Ther. Pat. 19, 275–281 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Li, W. & Ding, S. Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol. Sci. 31, 36–45 (2010).

    Article  PubMed  CAS  Google Scholar 

  52. Desbordes, S.C. et al. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2, 602–612 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Borowiak, M. et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4, 348–358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, S. et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat. Chem. Biol. 5, 258–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Zhu, S. et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4, 416–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Han, Y. et al. Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS ONE 4, e7155 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Mayr, L.M. & Fuerst, P. The future of high-throughput screening. J. Biomol. Screen 13, 443–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Zanella, F., Lorens, J.B. & Link, W. High content screening: seeing is believing. Trends Biotechnol. 28, 237–245 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Bickle, M. The beautiful cell: high-content screening in drug discovery. Anal. Bioanal. Chem. 398, 219–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Phillips, B.W. & Crook, J.M. Pluripotent human stem cells: a novel tool in drug discovery. BioDrugs 24, 99–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Ebert, A.D. & Svendsen, C.N. Human stem cells and drug screening: opportunities and challenges. Nat. Rev. Drug Discov. 9, 367–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Phillips, B.W. et al. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 16, 561–578 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Perrier, A.L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad Sci. USA 101, 12543–12548 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Spence, J.R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Spielmann, H. et al. The practical application of three validated in vitro embryotoxicity tests. The report and recommendations of an ECVAM/ZEBET workshop (ECVAM workshop 57). Altern. Lab. Anim. 34, 527–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Adler, S., Pellizzer, C., Hareng, L., Hartung, T. & Bremer, S. First steps in establishing a developmental toxicity test method based on human embryonic stem cells. Toxicol. In Vitro 22, 200–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Paquette, J.A. et al. Assessment of the embryonic stem cell test and application and use in the pharmaceutical industry. Birth Defects Res. B Dev. Reprod. Toxicol. 83, 104–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Andrews, P.D. et al. High-content screening of feeder-free human embryonic stem cells to identify pro-survival small molecules. Biochem. J. 432, 21–33 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Barbaric, I. et al. Novel regulators of stem cell fates identified by a multivariate phenotype screen of small compounds on human embryonic stem cell colonies. Stem Cell Res. 5, 104–119 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Xu, Y. et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc. Natl. Acad. Sci. USA 107, 8129–8134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Damoiseaux, R., Sherman, S.P., Alva, J.A., Peterson, C. & Pyle, A.D. Integrated chemical genomics reveals modifiers of survival in human embryonic stem cells. Stem Cells 27, 533–542 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chia, N.Y. et al. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468, 316–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Padilla-Nash, H.M., Barenboim-Stapleton, L., Difilippantonio, M.J. & Ried, T. Spectral karyotyping analysis of human and mouse chromosomes. Nat. Protoc. 1, 3129–3142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Placantonakis, D.G. et al. BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells 27, 521–532 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Antczak, C. et al. High-throughput identification of inhibitors of human mitochondrial peptide deformylase. J. Biomol. Screen 12, 521–535 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Malo, N., Hanley, J.A., Cerquozzi, S., Pelletier, J. & Nadon, R. Statistical practice in high-throughput screening data analysis. Nat. Biotechnol. 24, 167–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Malo, N. et al. Experimental design and statistical methods for improved hit detection in high-throughput screening. J. Biomol. Screen 15, 990–1000 (2010).

    Article  PubMed  Google Scholar 

  79. Ramadan, N., Flockhart, I., Booker, M., Perrimon, N. & Mathey-Prevot, B. Design and implementation of high-throughput RNAi screens in cultured Drosophila cells. Nat. Protoc. 2, 2245–2264 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Djaballah, D. Placantonakis and A. Ciro for their technical help during the development of the assay. This project was supported by an R-21 grant (1R21NS053655) from the National Institute of Neurological Disorders and Stroke(NINDS)/NIH and by a grant from the Starr Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.C.D. and L.S. conceived and designed the project. S.C.D. performed all the experiments and wrote the protocol. L.S. gave his comments on the writing.

Corresponding author

Correspondence to Sabrina C Desbordes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desbordes, S., Studer, L. Adapting human pluripotent stem cells to high-throughput and high-content screening. Nat Protoc 8, 111–130 (2013). https://doi.org/10.1038/nprot.2012.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.139

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research