Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Convergent synthesis of aminomethylene peptidomimetics

Abstract

This protocol describes a convergent synthesis of reduced amide bond peptidomimetics using thioacid-terminated peptides and aziridine-containing peptide conjugates. This approach could be used to produce peptides and proteins with modified backbones. The peptide conjugates are made using readily available aziridine aldehydes. The convergent synthesis of peptidomimetics is demonstrated through the preparation of long and short peptide fragments with an aminomethylene group incorporated within them. This transformation is amenable to the synthesis of peptides with reduced amide bonds at cysteine and alanine. The procedure describes the preparation of each component used and highlights the ease of synthesis of aminomethylene peptidomimetics, and takes about 3 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rink, R. et al. To protect peptide pharmaceuticals against peptidases. J. Pharmacol. Toxicol. Methods 61, 210–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Bursavich, M.G. & Rich, D.H. Designing non-peptide peptidomimetics in the 21st century: inhibitors targeting conformational ensembles. J. Med. Chem. 45, 541–558 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Inokuchi, E. et al. Design and synthesis of amidine-type peptide bond isosteres: application of nitrile oxide derivatives as active ester equivalents in peptide and peptidomimetics synthesis. Org. Biomol. Chem. 9, 3421–3427 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Martinez, J. et al. A structural modification which transforms an agonist molecule into an antagonist molecule in gastrin-like peptides. A hypothetical approach to the mechanism of action. Compt. Rend. Acad. Sci. 300, 437–440 (1985).

    CAS  Google Scholar 

  5. Szelke, M. et al. Potent new inhinitors of human renin. Nature 299, 555–557 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Grand, V., Aubry, A., Dupont, V., Vicherat, A. & Marraud, M. Folded structures in protonated reduced dipeptides. J. Peptide Sci. 2, 381–391 (1996).

    Article  CAS  Google Scholar 

  7. Santagada, V. et al. A valuable synthesis of reduced peptide bond by microwave irradiation. QSAR Comb. Sci. 23, 899–901 (2004).

    Article  CAS  Google Scholar 

  8. Oh, J.-E. & Lee, K.-H. Characterization of the unique function of a reduced amide bond in a cytolytic peptide that acts on phospholipid membranes. Biochem. J. 352, 659–666 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, S.-M., Kim, J.-M., Cho, H. & Lee, K.-H. Synthesis of antibacterial pseudopeptides with less hemolytic activity from a cytotoxic peptide and their pH-dependent activity. Bioorg. Med. Chem. Lett. 19, 5627–5631 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Long, S.B., Hancock, P.J., Kral, A.M., Hellinga, H.W. & Beese, L.S. The crystal structure of human protein farnesyltransferase reveal the basis for inhibition by CaaX tetrapeptides and their mimetics. Proc. Natl. Acad. Sci. 98, 12948–12953 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Wlodawer, A. & Erickson, J.W. Structure-based inhibitors of HIV-1 protease. Annu. Rev. Biochem. 62, 543–585 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Weber, J. et al. Potency comparison of peptidomimetic inhibitors against HIV-1 and HIV-2 proteinases: design of equipotent lead compounds. Arch. Biochem. Biophys. 341, 62–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Carreno, L.F., Alba, M.P., Varela, Y., Patarroyo, M.E. & Lozano, J.M. A new approach to obtaining N-α-t-Boc-amino acid aldehydes from asparagine and glutamine for reduced amide pseudopeptide solid-phase synthesis. Chem. Biol. Drug Des. 78, 603–611 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Park, M.-S., Oh, H.-S., Cho, H. & Lee, K.-H. Microwave-assisted solid-phase synthesis of pseudopeptides containing reduced amide bond. Tetrahedron Lett. 48, 1053–1057 (2007).

    Article  CAS  Google Scholar 

  15. Dugger, R.W., Ragan, J.A. & Ripin, D.H.B. Survey of GMP bulk reactions run in a research facility between 1985 and 2002. Org. Process Res. Dev. 9, 253–258 (2005).

    Article  CAS  Google Scholar 

  16. Potetinova, J.V., Milgotina, E.I., Makarov, V.A. & Voyushina, T.L. Synthesis of modified peptides with C-terminal α-amino aldehydes. Russ. J. Bioorg. Chem. 27, 141–150 (2001).

    Article  CAS  Google Scholar 

  17. Hili, R. & Yudin, A.K. Readily available unprotected amino aldehydes. J. Am. Chem. Soc. 128, 14772–14773 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Li, X. & Yudin, A.K. Epimerization- and protecting-group-free synthesis of peptidomimetic conjugates from amphoteric amino aldehydes. J. Am. Chem. Soc. 129, 14152–14153 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Dawson, P.E., Muir, T.W., Clack-Lewis, I. & Kent, S.B.H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Wieland, V.T., Bokelmann, E., Bauer, L., Lang, H.U. & Lau, H. Über Peptidsynthesen. 8. Mitteilung Bildung von S-haltigen Peptiden durch intramolekulare Wanderung von Aminoacylresten. Annalen der Chemie 583, 129–149 (1953).

    Article  CAS  Google Scholar 

  21. Wang, P. et al. N-linked glycopolypeptides. J. Am. Chem. Soc. 133, 1597–1602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crich, D. & Sana, K. Solid-phase synthesis of peptidyl thioacids employing a 9-fluorenylmethyl thioester-based linker in conjunction with Boc chemistry. J. Org. Chem. 74, 7383–7388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Assem, N., Natarajan, A. & Yudin, A.K. Chemoselective peptidomimetic ligation using thioacid peptides and aziridine templates. J. Am. Chem. Soc. 132, 10986–10987 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Yan, L.Z. & Dawson, P.E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Wan, Q. & Danishefsky, S.J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46, 9248–9252 (2007).

    Article  CAS  Google Scholar 

  26. Rotstein, B.H., Rai, V., Hili, R. & Yudin, A.K. Synthesis of peptide macrocycles using unprotected amino aldehydes. Nat. Protoc. 5, 1813–1822 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

N.A. and A.K.Y. performed the work and wrote the manuscript.

Corresponding author

Correspondence to Andrei K Yudin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assem, N., Yudin, A. Convergent synthesis of aminomethylene peptidomimetics. Nat Protoc 7, 1327–1334 (2012). https://doi.org/10.1038/nprot.2012.066

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.066

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing