Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Determination of site-specific glycan heterogeneity on glycoproteins

Abstract

The comprehensive analysis of protein glycosylation is a major requirement for understanding glycoprotein function in biological systems, and is a prerequisite for producing recombinant glycoprotein therapeutics. This protocol describes workflows for the characterization of glycopeptides and their site-specific heterogeneity, showing examples of the analysis of recombinant human erythropoietin (rHuEPO), α1-proteinase inhibitor (A1PI) and immunoglobulin (IgG). Glycoproteins of interest can be proteolytically digested either in solution or in-gel after electrophoretic separation, and the (glyco)peptides are analyzed by capillary/nano-liquid chromatography–electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). If required, specific glycopeptide enrichment steps, such as hydrophilic interaction liquid chromatography (HILIC), can also be performed. Particular emphasis is placed on data interpretation and the determination of site-specific glycan heterogeneity. The described workflow takes approximately 3–5 d, including sample preparation and data analysis. The data obtained from analyzing released glycans of rHuEPO and IgG, described in the second protocol of this series (10.1038/nprot.2012.063), provide complementary detailed glycan structural information that facilitates characterization of the glycopeptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the techniques providing comprehensive glycoprotein characterization.
Figure 2: Schematic examples for tubing connections.
Figure 3: MS/MS spectrum of a tryptic glycopeptide derived from IgG1.
Figure 4: Selected tryptic glycopeptides from rHuEPO.
Figure 5: Glycopeptide analysis of human IgG.
Figure 6: LC-MS/MS of α1-proteinase inhibitor.

Similar content being viewed by others

Ieva Bagdonaite, Stacy A. Malaker, … Nichollas E. Scott

References

  1. Morell, A.G., Gregoriadis, G., Scheinberg, I.H., Hickman, J. & Ashwell, G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J. Biol. Chem. 246, 1461–1467 (1971).

    CAS  PubMed  Google Scholar 

  2. Ma, B.Y. et al. CD28 T cell co-stimulatory receptor function is negatively regulated by N-linked carbohydrates. Biochem. Biophys. Res. Commun. 317, 60–67 (2004).

    Article  CAS  Google Scholar 

  3. Takahashi, M., Tsuda, T., Ikeda, Y., Honke, K. & Taniguchi, N. Role of N-glycans in growth factor signaling. Glycoconj. J. 20, 207–212 (2004).

    Article  CAS  Google Scholar 

  4. Kolarich, D., Lepenies, B. & Seeberger, P.H. Glycomics, glycoproteomics and the immune system. Curr. Opin. Chem. Biol. 16, 214–220 (2012).

    Article  CAS  Google Scholar 

  5. Kolarich, D. et al. Biochemical, molecular characterization, and glycoproteomic analyses of α(1)-proteinase inhibitor products used for replacement therapy. Transfusion 46, 1959–1977 (2006).

    Article  CAS  Google Scholar 

  6. Jensen, P.H., Karlsson, N.G., Kolarich, D. & Packer, N.H. Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 7, 1299–1310 (2012).

    Article  CAS  Google Scholar 

  7. Van Droogenbroeck, B. et al. Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc. Natl. Acad. Sci. USA 104, 1430–1435 (2007).

    Article  CAS  Google Scholar 

  8. Deshpande, N., Jensen, P.H., Packer, N.H. & Kolarich, D. GlycoSpectrumScan: fishing glycopeptides from MS spectra of protease digests of human colostrum sIgA. J. Proteome Res. 9, 1063–1075 (2010).

    Article  CAS  Google Scholar 

  9. Kolarich, D., Weber, A., Turecek, P.L., Schwarz, H.P. & Altmann, F. Comprehensive glyco-proteomic analysis of human α1-antitrypsin and its charge isoforms. Proteomics 6, 3369–3380 (2006).

    Article  CAS  Google Scholar 

  10. Stadlmann, J., Pabst, M., Kolarich, D., Kunert, R. & Altmann, F. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8, 2858–2871 (2008).

    Article  CAS  Google Scholar 

  11. Christiansen, M.N., Kolarich, D., Nevalainen, H., Packer, N.H. & Jensen, P.H. Challenges of determining O-glycopeptide heterogeneity: a fungal glucanase model system. Anal. Chem. 82, 3500–3509 (2010).

    Article  CAS  Google Scholar 

  12. Kolarich, D. et al. Glycoproteomic characterization of butyrylcholinesterase from human plasma. Proteomics 8, 254–263 (2008).

    Article  CAS  Google Scholar 

  13. Kolarich, D., Leonard, R., Hemmer, W. & Altmann, F. The N-glycans of yellow jacket venom hyaluronidases and the protein sequence of its major isoform in Vespula vulgaris. FEBS J. 272, 5182–5190 (2005).

    Article  CAS  Google Scholar 

  14. Kolarich, D., Altmann, F. & Sunderasan, E. Structural analysis of the glycoprotein allergen Hev b 4 from natural rubber latex by mass spectrometry. Biochim. Biophys. Acta. 1760, 715–720 (2006).

    Article  CAS  Google Scholar 

  15. Wada, Y. et al. Comparison of the methods for profiling glycoprotein glycans—HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17, 411–422 (2007).

    Article  CAS  Google Scholar 

  16. Wada, Y. et al. Comparison of methods for profiling O-glycosylation: human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1. Mol. Cell Proteomics 9, 719–727 (2010).

    Article  CAS  Google Scholar 

  17. Ito, S., Hayama, K. & Hirabayashi, J. Enrichment strategies for glycopeptides. Methods Mol. Biol. 534, 195–203 (2009).

    CAS  PubMed  Google Scholar 

  18. Huhn, C., Selman, M.H., Ruhaak, L.R., Deelder, A.M. & Wuhrer, M. IgG glycosylation analysis. Proteomics 9, 882–913 (2009).

    Article  CAS  Google Scholar 

  19. Selman, M.H. et al. Immunoglobulin G glycopeptide profiling by matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 82, 1073–1081 (2010).

    Article  CAS  Google Scholar 

  20. Mysling, S., Palmisano, G., Hojrup, P. & Thaysen-Andersen, M. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal. Chem. 82, 5598–5609 (2010).

    Article  CAS  Google Scholar 

  21. Thaysen-Andersen, M., Mysling, S. & Hojrup, P. Site-specific glycoprofiling of N-linked glycopeptides using MALDI-TOF MS: strong correlation between signal strength and glycoform quantities. Anal. Chem. 81, 3933–3943 (2009).

    Article  CAS  Google Scholar 

  22. Peltoniemi, H., Joenvaara, S. & Renkonen, R. De novo glycan structure search with the CID MS/MS spectra of native N-glycopeptides. Glycobiology 19, 707–714 (2009).

    Article  CAS  Google Scholar 

  23. Demelbauer, U.M., Zehl, M., Plematl, A., Allmaier, G. & Rizzi, A. Determination of glycopeptide structures by multistage mass spectrometry with low-energy collision-induced dissociation: comparison of electrospray ionization quadrupole ion trap and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight approaches. Rapid Commun. Mass Spectrom. 18, 1575–1582 (2004).

    Article  CAS  Google Scholar 

  24. Morelle, W. & Michalski, J.C. Analysis of protein glycosylation by mass spectrometry. Nat. Protoc. 2, 1585–1602 (2007).

    Article  CAS  Google Scholar 

  25. O'Connor, P.B. & Costello, C.E. A high pressure matrix-assisted laser desorption/ionization Fourier transform mass spectrometry ion source for thermal stabilization of labile biomolecules. Rapid Commun. Mass Spectrom. 15, 1862–1868 (2001).

    Article  CAS  Google Scholar 

  26. Wang, H. et al. Integrated mass spectrometry–based analysis of plasma glycoproteins and their glycan modifications. Nat. Protoc. 6, 253–269 (2011).

    Article  CAS  Google Scholar 

  27. Yu, K. et al. Ultra-performance liquid chromatography/tandem mass spectrometric quantification of structurally diverse drug mixtures using an ESI-APCI multimode ionization source. Rapid Commun. Mass Spectrom. 21, 893–902 (2007).

    Article  CAS  Google Scholar 

  28. Castellanos-Serra, L., Proenza, W., Huerta, V., Moritz, R.L. & Simpson, R.J. Proteome analysis of polyacrylamide gel-separated proteins visualized by reversible negative staining using imidazole-zinc salts. Electrophoresis 20, 732–737 (1999).

    Article  CAS  Google Scholar 

  29. An, H.J., Peavy, T.R., Hedrick, J.L. & Lebrilla, C.B. Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal. Chem. 75, 5628–5637 (2003).

    Article  CAS  Google Scholar 

  30. Nwosu, C.C. et al. Simultaneous and extensive site-specific N- and O-glycosylation analysis in protein mixtures. J. Proteome Res. 10, 2612–2624 (2011).

    Article  CAS  Google Scholar 

  31. Zauner, G., Koeleman, C.A., Deelder, A.M. & Wuhrer, M. Protein glycosylation analysis by HILIC-LC-MS of Proteinase K–generated N- and O-glycopeptides. J. Sep. Sci. 33, 903–910 (2010).

    Article  CAS  Google Scholar 

  32. Dodds, E.D., Seipert, R.R., Clowers, B.H., German, J.B. & Lebrilla, C.B. Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics. J. Proteome Res. 8, 502–512 (2009).

    Article  CAS  Google Scholar 

  33. Taouatas, N., Drugan, M.M., Heck, A.J. & Mohammed, S. Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase. Nat. Methods 5, 405–407 (2008).

    Article  CAS  Google Scholar 

  34. Calvano, C.D., Zambonin, C.G. & Jensen, O.N. Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry. J. Proteomics 71, 304–317 (2008).

    Article  CAS  Google Scholar 

  35. Wang, Y., Wu, S.L. & Hancock, W.S. Monitoring of glycoprotein products in cell culture lysates using lectin affinity chromatography and capillary HPLC coupled to electrospray linear ion trap-Fourier transform mass spectrometry (LTQ/FTMS). Biotechnol. Prog. 22, 873–880 (2006).

    Article  CAS  Google Scholar 

  36. Lee, A. et al. The lectin riddle: glycoproteins fractionated from complex mixtures have similar glycomic profiles. OMICS 14, 487–499 (2010).

    Article  Google Scholar 

  37. Lee, A. et al. Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture. J. Proteome Res. 8, 770–781 (2009).

    Article  CAS  Google Scholar 

  38. Larsen, M.R., Cordwell, S.J. & Roepstorff, P. Graphite powder as an alternative or supplement to reversed-phase material for desalting and concentration of peptide mixtures prior to matrix-assisted laser desorption/ionization-mass spectrometry. Proteomics 2, 1277–1287 (2002).

    Article  CAS  Google Scholar 

  39. Larsen, M.R., Hojrup, P. & Roepstorff, P. Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol. Cell Proteomics 4, 107–119 (2005).

    Article  CAS  Google Scholar 

  40. Lewandrowski, U. & Sickmann, A. Online dual gradient reversed-phase/porous graphitized carbon nanoHPLC for proteomic applications. Anal. Chem. 82, 5391–5396 (2010).

    Article  CAS  Google Scholar 

  41. Wagner-Rousset, E. et al. The way forward, enhanced characterization of therapeutic antibody glycosylation: comparison of three level mass spectrometry–based strategies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 872, 23–37 (2008).

    Article  CAS  Google Scholar 

  42. Pan, S., Chen, R., Aebersold, R. & Brentnall, T.A. Mass spectrometry–based glycoproteomics—from a proteomics perspective. Mol. Cell Proteomics 10, R110 003251 (2011).

    Article  Google Scholar 

  43. Jensen, O.N., Shevchenko, A. & Mann, M. in Protein Structure: A Practical Approach (ed. Creighton, T.E.) 29–57 (IRL Press, 1997).

  44. Hagglund, P. et al. An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. J. Proteome Res. 6, 3021–3031 (2007).

    Article  Google Scholar 

  45. Cooper, C.A., Gasteiger, E. & Packer, N.H. GlycoMod—a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1, 340–349 (2001).

    Article  CAS  Google Scholar 

  46. Wada, Y. et al. Comparison of methods for profiling O-glycosylation. Mol. Cell Proteomics 9, 719–727 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.K. was supported by an Erwin Schrödinger Fellowship from the Austrian Science Fund (grant J2661) and Macquarie University. P.H.J. was supported by the Danish Agency for Science, Technology and Innovation (grant 272-07-0066). The technical help of T. Dalik is as always highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

D.K. performed the experiments on the therapeutic proteins and developed the initial protocol. F.A. and D.K. crucially validated MS data interpretation. D.K. and P.H.J. performed the experiments on the protein complex mixtures and optimized the protocol. D.K. and N.H.P. wrote the paper and prepared it for submission.

Corresponding author

Correspondence to Nicolle H Packer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolarich, D., Jensen, P., Altmann, F. et al. Determination of site-specific glycan heterogeneity on glycoproteins. Nat Protoc 7, 1285–1298 (2012). https://doi.org/10.1038/nprot.2012.062

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.062

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing