Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A transient parabiosis skin transplantation model in mice

Abstract

Parabiosis—conjoined surgery to provide a shared circulation between two mice—has been previously developed to study the hematopoietic system. This protocol describes the use of parabiosis for efficient transplantation of skin from a transgenic to a wild-type mouse. It can be used to study the role of stromal cells in a spontaneous model of distant cancer dissemination (metastasis). We have recently shown that primary tumor-derived stromal cells may facilitate metastasis by providing a provisional stroma at the secondary site. Studying the role of primary tumor–derived stroma cells requires methods for distinguishing and targeting stromal cells originating from the primary tumor versus their counterparts in the metastatic site. Parabiosis may also be used, taking advantage of the shared circulation between the parabiosed mice, to study tumor metastasis from one parabiont to another, or to investigate the role of circulating inflammatory cells or stem cells. Studying the role of stromal cells in metastasis using this model typically takes up to 11 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the experiment.
Figure 2: GFP+ skin transplantation through parabiosis surgery under general anesthesia.
Figure 3: Quantification of tumor-derived GFP+ stromal cells in lung metastases.
Figure 4: Passenger stromal cells in spontaneous metastasis.

Similar content being viewed by others

References

  1. Barcellos-Hoff, M.H. & Ravani, S.A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).

    CAS  PubMed  Google Scholar 

  2. Bhowmick, N.A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobs, T.W., Byrne, C., Colditz, G., Connolly, J.L. & Schnitt, S.J. Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N. Engl. J. Med. 340, 430–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhowmick, N.A., Neilson, E.G. & Moses, H.L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olumi, A.F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  8. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Tlsty, T.D. Stromal cells can contribute oncogenic signals. Semin. Cancer Biol. 11, 97–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Joyce, J.A. & Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Fidler, I.J. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Bouvet, M. et al. In vivo color-coded imaging of the interaction of colon cancer cells and splenocytes in the formation of liver metastases. Cancer Res. 66, 11293–11297 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Duda, D.G. et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl. Acad. Sci. USA 107, 21677–21682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Podsypanina, K. et al. Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321, 1841–1844 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Kaplan, R.N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Deventer, H.W. et al. C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am. J. Pathol. 173, 253–264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Al-Mehdi, A.B. et al. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med. 6, 100–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Liotta, L.A., Saidel, M.G. & Kleinerman, J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 36, 889–894 (1976).

    CAS  PubMed  Google Scholar 

  21. Chertow, B.S., Fidler, W.J. & Fariss, B.L. Graves' disease and Hashimoto's thyroiditis in monozygous twins. Acta Endocrinol (Copenh) 72, 18–24 (1973).

    Article  CAS  Google Scholar 

  22. Ruiter, D.J., van Krieken, J.H., van Muijen, G.N. & de Waal, R.M. Tumour metastasis: is tissue an issue? Lancet Oncol. 2, 109–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Sahai, E. Illuminating the metastatic process. Nat. Rev. Cancer 7, 737–749 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Fidler, I.J. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur. J. Cancer 9, 223–227 (1973).

    Article  CAS  PubMed  Google Scholar 

  25. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, M. et al. Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc. Natl. Acad. Sci. USA 100, 14259–14262 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Albini, A. & Benelli, R. The chemoinvasion assay: a method to assess tumor and endothelial cell invasion and its modulation. Nat. Protoc. 2, 504–511 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Bayless, K.J., Kwak, H.I. & Su, S.C. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat. Protoc. 4, 1888–1898 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Duyverman, A.M.M.J., Steller, E.J., Fukumura, D., Jain, R.K. & Duda, D.G. Studying carcinoma-associated fibroblast involvement in cancer metastasis in mice. Nat. Protoc. 7, 756–762 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duyverman, A.M.M.J. et al. An isolated tumor perfusion model in mice. Nat. Protoc. 7, 749–755 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duda, D.G. et al. Differential transplantability of tumor-associated stromal cells. Cancer Res. 63, 5920–5924 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by US National Cancer Institute grants P01-CA80124, R01-CA115767, R01-CA85140, R01-CA126642 and T32-CA73479 (R.K.J.), R01-CA96915 (D.F.), R21-CA139168 and R01-CA159258 (D.G.D.) and Federal Share Proton Beam Program grants (R.K.J., D.F. and D.G.D.); Department of Defense Innovator Award W81XWH-10-1-0016 (R.K.J.) and Predoctoral Fellowship W81XWH-06-1-0781 (A.M.M.J.D.); American Cancer Society grant RSG-11-073-01TBG (D.G.D.); and Stichting Michael Van Vloten Fonds and the Stichting Jo Kolk (A.M.M.J.D.). We acknowledge the outstanding technical assistance of J. Kahn, S. Roberge and P. Huang with animal models.

Author information

Authors and Affiliations

Authors

Contributions

D.G.D., D.F. and R.K.J. designed the studies; A.M.M.J.D. and M.K. performed the experiments; D.G.D., D.F., A.M.M.J.D., M.K. and R.K.J. analyzed the data; and A.M.M.J.D., D.G.D. and D.F. wrote the manuscript.

Corresponding author

Correspondence to Dai Fukumura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duyverman, A., Kohno, M., Duda, D. et al. A transient parabiosis skin transplantation model in mice. Nat Protoc 7, 763–770 (2012). https://doi.org/10.1038/nprot.2012.032

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.032

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer