Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Improved biocytin labeling and neuronal 3D reconstruction

Abstract

In this report, we describe a reliable protocol for biocytin labeling of neuronal tissue and diaminobenzidine (DAB)-based processing of brain slices. We describe how to embed tissues in different media and how to subsequently histochemically label the tissues for light or electron microscopic examination. We provide a detailed dehydration and embedding protocol using Eukitt that avoids the common problem of tissue distortion and therefore prevents fading of cytoarchitectural features (in particular, lamination) of brain tissue; as a result, additional labeling methods (such as cytochrome oxidase staining) become unnecessary. In addition, we provide correction factors for tissue shrinkage in all spatial dimensions so that a realistic neuronal morphology can be obtained from slice preparations. Such corrections were hitherto difficult to calculate because embedding in viscous media resulted in highly nonlinear tissue deformation. Fixation, immunocytochemistry and embedding procedures for light microscopy (LM) can be completed within 42–48 h. Subsequent reconstructions and morphological analyses take an additional 24 h or more.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart for biocytin labeling.
Figure 2: 'Corkscrew' effect as a result of overly rapid dehydration.
Figure 3: Optical effects in the barrel field of neocortical layer 4 due to different embedding media.
Figure 4: Visibility of cortical lamination in different embedding media.
Figure 5: Resolution of subcellular structures in slices embedded in Moviol and Eukitt.
Figure 6: Shrinkage correction of biocytin-labeled neurons in brain slices.

Similar content being viewed by others

References

  1. Horikawa, K. & Armstrong, W.E. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J. Neurosci. Methods 25, 1–11 (1988).

    Article  CAS  Google Scholar 

  2. Feldmeyer, D., Egger, V., Lübke, J. & Sakmann, B. Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single 'barrel' of developing rat somatosensory cortex. J. Physiol. 521 (Pt 1): 169–190 (1999).

    Article  CAS  Google Scholar 

  3. Yuste, R., Peinado, A. & Katz, L.C. Neuronal domains in developing neocortex. Science 257, 665–669 (1992).

    Article  CAS  Google Scholar 

  4. Rörig, B., Klausa, G. & Sutor, B. Dye coupling between pyramidal neurons in developing rat prefrontal and frontal cortex is reduced by protein kinase A activation and dopamine. J. Neurosci. 15, 7386–7400 (1995).

    Article  Google Scholar 

  5. Vaney, D.I., Nelson, J.C. & Pow, D.V. Neurotransmitter coupling through gap junctions in the retina. J. Neurosci. 18, 10594–10602 (1998).

    Article  CAS  Google Scholar 

  6. Montoro, R.J. & Yuste, R. Gap junctions in developing neocortex: a review. Brain Res. Rev. 47, 216–226 (2004).

    Article  CAS  Google Scholar 

  7. Somogyi, P., Tamás, G., Luján, R. & Buhl, E.H. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Rev. 26, 113–135 (1998).

    Article  CAS  Google Scholar 

  8. Kubota, Y. et al. Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb. Cortex 21, 1803–1817 (2011).

    Article  Google Scholar 

  9. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    Article  CAS  Google Scholar 

  10. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    Article  CAS  Google Scholar 

  11. Ascoli, G.A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  CAS  Google Scholar 

  12. Cauli, B. et al. Molecular and physiological diversity of cortical nonpyramidal cells. J. Neurosci. 17, 3894–3906 (1997).

    Article  CAS  Google Scholar 

  13. Dumitriu, D., Cossart, R., Huang, J. & Yuste, R. Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. Cereb. Cortex 17, 81–91 (2007).

    Article  Google Scholar 

  14. Helmstaedter, M., Sakmann, B. & Feldmeyer, D. The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex. Cereb. Cortex 19, 938–950 (2009).

    Article  Google Scholar 

  15. Helmstaedter, M., Sakmann, B. & Feldmeyer, D. Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb. Cortex 19, 926–937 (2009).

    Article  Google Scholar 

  16. Helmstaedter, M., Sakmann, B. & Feldmeyer, D. L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. Cereb. Cortex 19, 951–962 (2009).

    Article  Google Scholar 

  17. Krimer, L.S. et al. Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2–3 of monkey dorsolateral prefrontal cortex. J. Neurophysiol. 94, 3009–3022 (2005).

    Article  Google Scholar 

  18. Molnár, Z. & Cheung, A.F. Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci. Res. 55, 105–115 (2006).

    Article  Google Scholar 

  19. Brown, S.P. & Hestrin, S. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457, 1133–1136 (2009).

    Article  CAS  Google Scholar 

  20. Groh, A. et al. Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb. Cortex 20, 826–836 (2010).

    Article  Google Scholar 

  21. Kumar, P. & Ohana, O. Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. J. Neurophysiol. 100, 1909–1922 (2008).

    Article  Google Scholar 

  22. Oberlaender, M. et al. Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch. Proc. Natl. Acad. Sci. USA 108, 4188–4193 (2011).

    Article  CAS  Google Scholar 

  23. Feldmeyer, D., Lübke, J. & Sakmann, B. Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J. Physiol. 575, 583–602 (2006).

    Article  CAS  Google Scholar 

  24. Buhl, E.H., Szilagyi, T., Halasy, K. & Somogyi, P. Physiological properties of anatomically identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro. Hippocampus 6, 294–305 (1996).

    Article  CAS  Google Scholar 

  25. Halasy, K., Buhl, E.H., Lörinczi, Z., Tamas, G. & Somogyi, P. Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus 6, 306–329 (1996).

    Article  CAS  Google Scholar 

  26. Lübke, J., Egger, V., Sakmann, B. & Feldmeyer, D. Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J. Neurosci. 20, 5300–5311 (2000).

    Article  Google Scholar 

  27. Markram, H., Lübke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500 (Pt 2): 409–440 (1997).

    Article  CAS  Google Scholar 

  28. Gulyás, A.I. et al. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature 366, 683–687 (1993).

    Article  Google Scholar 

  29. Silver, R.A., Lübke, J., Sakmann, B. & Feldmeyer, D. High-probability uniquantal transmission at excitatory synapses in barrel cortex. Science 302, 1981–1984 (2003).

    Article  CAS  Google Scholar 

  30. Thomson, A.M. & Deuchars, J. Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb. Cortex 7, 510–522 (1997).

    Article  CAS  Google Scholar 

  31. Thomson, A.M. & West, D.C. Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex. Neuroscience 54, 329–346 (1993).

    Article  CAS  Google Scholar 

  32. Debanne, D. et al. Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices. Nat. Protoc. 3, 1559–1568 (2008).

    Article  CAS  Google Scholar 

  33. Sarid, L., Bruno, R., Sakmann, B., Segev, I. & Feldmeyer, D. Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations. Proc. Natl. Acad. Sci. USA 104, 16353–16358 (2007).

    Article  CAS  Google Scholar 

  34. Helmstaedter, M., de Kock, C.P., Feldmeyer, D., Bruno, R.M. & Sakmann, B. Reconstruction of an average cortical column in silico. Brain Res. Rev. 55, 193–203 (2007).

    Article  CAS  Google Scholar 

  35. Frick, A., Feldmeyer, D., Helmstaedter, M. & Sakmann, B. Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. Cereb. Cortex 18, 397–406 (2008).

    Article  Google Scholar 

  36. Helmstaedter, M., Staiger, J.F., Sakmann, B. & Feldmeyer, D. Efficient recruitment of layer 2/3 interneurons by layer 4 input in single columns of rat somatosensory cortex. J. Neurosci. 28, 8273–8284 (2008).

    Article  CAS  Google Scholar 

  37. Feldmeyer, D., Roth, A. & Sakmann, B. Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J. Neurosci. 25, 3423–3431 (2005).

    Article  CAS  Google Scholar 

  38. Lübke, J., Roth, A., Feldmeyer, D. & Sakmann, B. Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb. Cortex 13, 1051–1063 (2003).

    Article  Google Scholar 

  39. Feldmeyer, D., Lübke, J., Silver, R.A. & Sakmann, B. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column. J. Physiol. 538, 803–822 (2002).

    Article  CAS  Google Scholar 

  40. Radnikow, G., Feldmeyer, D. & Lübke, J. Axonal projection, input and output synapses, and synaptic physiology of Cajal-Retzius cells in the developing rat neocortex. J. Neurosci. 22, 6908–6919 (2002).

    Article  CAS  Google Scholar 

  41. Egger, V., Feldmeyer, D. & Sakmann, B. Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat. Neurosci. 2, 1098–1105 (1999).

    Article  CAS  Google Scholar 

  42. Wong-Riley, M.T. & Welt, C. Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc. Natl. Acad. Sci. USA 77, 2333–2337 (1980).

    Article  CAS  Google Scholar 

  43. Land, P.W. & Simons, D.J. Cytochrome oxidase staining in the rat SmI barrel cortex. J. Comp. Neurol. 238, 225–235 (1985).

    Article  CAS  Google Scholar 

  44. Egger, V., Nevian, T. & Bruno, R.M. Subcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex. Cereb. Cortex 18, 876–889 (2008).

    Article  Google Scholar 

  45. Helmstaedter, M. & Feldmeyer, D. Axons predict neuronal connectivity within and between cortical columns and serve as primary classifiers of interneurons in a cortical column. in New Aspects of Axonal Structure and Function (eds. Feldmeyer, D. & Lübke, J.) (Springer Science + Business Media, 2010).

  46. Hsu, S.M., Raine, L. & Fanger, H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 29, 577–580 (1981).

    Article  CAS  Google Scholar 

  47. Huang, Q., Zhou, D. & DiFiglia, M. Neurobiotin, a useful neuroanatomical tracer for in vivo anterograde, retrograde and transneuronal tract-tracing and for in vitro labeling of neurons. J. Neurosci. Methods 41, 31–43 (1992).

    Article  CAS  Google Scholar 

  48. Buhl, E.H., Cobb, S.R., Halasy, K. & Somogyi, P. Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus. Eur. J. Neurosci. 7, 1989–2004 (1995).

    Article  CAS  Google Scholar 

  49. Tamás, G., Buhl, E.H. & Somogyi, P. Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. J. Physiol. 500, 715–738 (1997).

    Article  Google Scholar 

  50. Losonczy, A., Zhang, L., Shigemoto, R., Somogyi, P. & Nusser, Z. Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones. J. Physiol. 542, 193–210 (2002).

    Article  CAS  Google Scholar 

  51. Tamás, G., Szabadics, J., Lörincz, A. & Somogyi, P. Input and frequency-specific entrainment of postsynaptic firing by IPSPs of perisomatic or dendritic origin. Eur. J. Neurosci. 20, 2681–2690 (2004).

    Article  Google Scholar 

  52. Glickfeld, L.L., Roberts, J.D., Somogyi, P. & Scanziani, M. Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis. Nat. Neurosci. 12, 21–23 (2009).

    Article  CAS  Google Scholar 

  53. Deuchars, J. & Thomson, A.M. Single axon fast inhibitory postsynaptic potentials elicited by a sparsely spiny interneuron in rat neocortex. Neuroscience 65, 935–942 (1995).

    Article  CAS  Google Scholar 

  54. Thomson, A.M., West, D.C., Hahn, J. & Deuchars, J. Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. J. Physiol. 496 (Pt 1): 81–102 (1996).

    Article  CAS  Google Scholar 

  55. Han, Z.S., Buhl, E.H., Lörinczi, Z. & Somogyi, P. A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur. J. Neurosci. 5, 395–410 (1993).

    Article  CAS  Google Scholar 

  56. Osborn, M. & Weber, K. Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. Methods Cell Biol. 24, 97–132 (1982).

    Article  CAS  Google Scholar 

  57. Hoffpauir, B.K., Pope, B.A. & Spirou, G.A. Serial sectioning and electron microscopy of large tissue volumes for 3D analysis and reconstruction: a case study of the calyx of Held. Nat. Protoc. 2, 9–22 (2007).

    Article  CAS  Google Scholar 

  58. Knott, G.W., Holtmaat, A., Trachtenberg, J.T., Svoboda, K. & Welker, E. A protocol for preparing GFP-labeled neurons previously imaged in vivo and in slice preparations for light and electron microscopic analysis. Nat. Protoc. 4, 1145–1156 (2009).

    Article  CAS  Google Scholar 

  59. Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protoc. 1, 1235–1247 (2006).

    Article  CAS  Google Scholar 

  60. Radnikow, G., Günter, R.H., Marx, M. & Feldmeyer, D. Morpho-functional mapping of cortical networks in brain slice preparations using paired electrophysiological recordings. in Neuromethods: Neuronal Network Analysis (eds. Fellin, T. & Halassa, M.) (Humana Press, 2012).

  61. Jackson, M.B. Whole-cell voltage clamp recording. Curr. Prot. Neurosci. 6.6.1–6.6.30 (2001).

  62. Khalilov, I. et al. A novel in vitro preparation: the intact hippocampal formation. Neuron 19, 743–749 (1997).

    Article  CAS  Google Scholar 

  63. Kilb, W. & Luhmann, H.J. Carbachol-induced network oscillations in the intact cerebral cortex of the newborn rat. Cereb. Cortex 13, 409–421 (2003).

    Article  Google Scholar 

  64. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  65. Wong-Riley, M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 171, 11–28 (1979).

    Article  CAS  Google Scholar 

  66. Stäubli, W. A new embedding technique for electron microscopy, combining a water-soluble epoxy resin (Durcupan) with water-insoluble araldite. J. Cell Biol. 16, 197–201 (1963).

    Article  Google Scholar 

  67. Kushida, H. Improved methods for embedding with Durcupan. J. Electron Microsc. (Tokyo) 13, 139–144 (1964).

    CAS  Google Scholar 

  68. Somogyi, P. & Hodgson, A.J. Antisera to gamma-aminobutyric acid. III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex. J. Histochem. Cytochem. 33, 249–257 (1985).

    Article  CAS  Google Scholar 

  69. Harris, K.M. et al. Uniform serial sectioning for transmission electron microscopy. J. Neurosci. 26, 12101–12103 (2006).

    Article  CAS  Google Scholar 

  70. Agmon, A. & Connors, B.W. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41, 365–379 (1991).

    Article  CAS  Google Scholar 

  71. Land, P.W. & Kandler, K. Somatotopic organization of rat thalamocortical slices. J. Neurosci. Methods 119, 15–21 (2002).

    Article  Google Scholar 

  72. Glaser, J.R. & Glaser, E.M. Neuron imaging with Neurolucida—a PC-based system for image combining microscopy. Comput. Med. Imaging Graph 14, 307–317 (1990).

    Article  CAS  Google Scholar 

  73. Hines, M.L. & Carnevale, N.T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

    Article  CAS  Google Scholar 

  74. Köhler, A. Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke. Zeitschrift für wissenschaftliche Mikroskopie und für Mikroskopische Technik 10, 433–440 (1893).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG; Research Group BaCoFun), the Helmholtz Association and the Helmholtz Alliance for Systems Biology. We thank A. Rollenhagen for help with the EM protocol and T. Abel for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.M. and W.H. performed the experiments; M.M. and R.H.G. analyzed data; M.M., R.H.G., G.R. and D.F. wrote the manuscript; and D.F. and G.R. designed the study.

Corresponding author

Correspondence to Dirk Feldmeyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marx, M., Günter, R., Hucko, W. et al. Improved biocytin labeling and neuronal 3D reconstruction. Nat Protoc 7, 394–407 (2012). https://doi.org/10.1038/nprot.2011.449

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2011.449

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing