Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Designing and using RNA scaffolds to assemble proteins in vivo

Abstract

RNA scaffolds are synthetic noncoding RNA molecules with engineered 3D folding harnessed to spatially organize proteins in vivo. Here we provide a protocol to design, express and characterize RNA scaffolds and their cognate proteins within 1 month. The RNA scaffold designs described here are based on either monomeric or multimeric units harboring RNA aptamers as protein docking sites. The scaffolds and proteins are cloned into inducible plasmids and expressed to form functional assemblies. RNA scaffolds find applications in many fields in which in vivo organization of biomolecules is of interest. RNA scaffolds provide extended flexibility compared with DNA or protein scaffolding strategies through programmed modulation of multiple protein stoichiometry and numbers, as well as the proteins' relative distances and spatial orientations. For synthetic biology, RNA scaffolds provide a new platform that can be used to increase yields of sequential metabolic pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General workflow for design, induction, expression and experimental testing of the RNA scaffold.
Figure 2: Designing and optimizing RNA scaffolds using RNA Designer.
Figure 3: Compatible aptamer pair.
Figure 4: Examples of RNA scaffold folding scheme designs.
Figure 5: Modular cloning approach to the design of RNA scaffolds.
Figure 6: Example of RNA Designer input and output sequences and structures.

Similar content being viewed by others

References

  1. Delebecque, C.J., Lindner, A.B., Silver, P.A. & Aldaye, F.A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470–474 (2011).

    Article  CAS  Google Scholar 

  2. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  Google Scholar 

  3. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  Google Scholar 

  4. Bunka, D.H.J. & Stockley, P.G. Aptamers come of age - at last. Nat. Rev. Micro. 4, 588–596 (2006).

    Article  CAS  Google Scholar 

  5. Eddy, S.R. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2, 919–929 (2001).

    Article  CAS  Google Scholar 

  6. Isaacs, F.J., Dwyer, D.J. & Collins, J.J. RNA synthetic biology. Nat. Biotechnol. 24, 545–554 (2006).

    Article  CAS  Google Scholar 

  7. Win, M.N. & Smolke, C.D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    Article  CAS  Google Scholar 

  8. Callura, J.M., Dwyer, D.J., Isaacs, F.J., Cantor, C.R. & Collins, J.J. Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc. Natl. Acad. Sci. USA 107, 15898–15903 (2010).

    Article  CAS  Google Scholar 

  9. Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  Google Scholar 

  10. Conrado, R.J., Varner, J.D. & DeLisa, M.P. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr. Opin. Biotechnol. 19, 492–499 (2008).

    Article  CAS  Google Scholar 

  11. Savage, D.F., Afonso, B., Chen, A.H. & Silver, P.A. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327, 1258–1261 (2010).

    Article  CAS  Google Scholar 

  12. Burack, W.R. & Shaw, A.S. Signal transduction: hanging on a scaffold. Curr. Opin. Cell Biol. 12, 211–216 (2000).

    Article  CAS  Google Scholar 

  13. Zappulla, D.C. & Cech, T.R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl. Acad. Sci. USA 101, 10024–10029 (2004).

    Article  CAS  Google Scholar 

  14. Cayrol, B. et al. A nanostructure made of a bacterial noncoding RNA. J. Am. Chem. Soc. 131, 17270–17276 (2009).

    Article  CAS  Google Scholar 

  15. Shevtsov, S.P. & Dundr, M. Nucleation of nuclear bodies by RNA. Nat. Cell Biol. 13, 167–173 (2011).

    Article  CAS  Google Scholar 

  16. Adam, G. & Delbriick, M. Reduction of dimensionality in biological diffusion processes. Struct. Chem. Mol. Biol. 198–215 (1968).

  17. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  Google Scholar 

  18. Lee, H., DeLoache, W.C. & Dueber, J.E. Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14, 242–251 (2012).

    Article  CAS  Google Scholar 

  19. Park, S.-H., Zarrinpar, A. & Lim, W.A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061–1064 (2003).

    Article  CAS  Google Scholar 

  20. Agapakis, C.M. et al. Insulation of a synthetic hydrogen metabolism circuit in bacteria. J. Biol. Eng. 4, 3–15 (2010).

    Article  Google Scholar 

  21. Moon, T.S., Dueber, J.E., Shiue, E. & Prather, K.L.J. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 12, 298–305 (2010).

    Article  CAS  Google Scholar 

  22. Conrado, R.J. et al. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res. 40, 1879–1889 (2011).

    Article  Google Scholar 

  23. Shu, D., Moll, W.-D., Deng, Z., Mao, C. & Guo, P. Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett. 4, 1717–1723 (2004).

    Article  CAS  Google Scholar 

  24. Guo, P. The emerging field of RNA nanotechnology. Nat. Nanotechnol. 5, 833–842 (2010).

    Article  CAS  Google Scholar 

  25. Afonin, K.A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 5, 676–682 (2010).

    Article  CAS  Google Scholar 

  26. Andronescu, M., Aguirre-Hernandez, R., Condon, A. & Hoos, H.H. RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Res. 31, 3416–3422 (2003).

    Article  CAS  Google Scholar 

  27. Chao, J.A., Patskovsky, Y., Almo, S.C. & Singer, R.H. Structural basis for the coevolution of a viral RNA-protein complex. Nat. Struct. Mol. Biol. 15, 103–105 (2008).

    Article  CAS  Google Scholar 

  28. Convery, M.A. et al. Crystal structure of an RNA aptamer-protein complex at 2.8 A resolution. Nat. Struct. Biol. 5, 133–139 (1998).

    Article  CAS  Google Scholar 

  29. Lim, F., Downey, T.P. & Peabody, D.S. Translational repression and specific RNA binding by the coat protein of the Pseudomonas phage PP7. J. Biol. Chem. 276, 22507–22513 (2001).

    Article  CAS  Google Scholar 

  30. Parrott, A.M. et al. RNA aptamers for the MS2 bacteriophage coat protein and the wild-type RNA operator have similar solution behaviour. Nucleic Acids Res. 28, 489–497 (2000).

    Article  CAS  Google Scholar 

  31. Golding, I. & Cox, E.C. RNA dynamics in live Escherichia coli cells. Proc. Natl. Acad. Sci. USA 101, 11310–11315 (2004).

    Article  CAS  Google Scholar 

  32. Valencia-Burton, M., McCullough, R.M., Cantor, C.R. & Broude, N.E. RNA visualization in live bacterial cells using fluorescent protein complementation. Nat. Methods 4, 421–427 (2007).

    CAS  PubMed  Google Scholar 

  33. Aldaye, F.A., Palmer, A.L. & Sleiman, H.F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  Google Scholar 

  34. Seeman, N.C. An overview of structural DNA nanotechnology. Mol. Biotechnol. 37, 246–257 (2007).

    Article  CAS  Google Scholar 

  35. Liu, H., Chen, Y., He, Y., Ribbe, A.E. & Mao, C. Approaching the limit: can one DNA oligonucleotide assemble into large nanostructures? Angew. Chem. Int. Ed. Engl. 45, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  36. Liu, H., He, Y., Ribbe, A.E. & Mao, C. Two-dimensional (2D) DNA crystals assembled from two DNA strands. Biomacromolecules 6, 2943–2945 (2005).

    Article  CAS  Google Scholar 

  37. Yin, P., Choi, H.M.T., Calvert, C.R. & Pierce, N.A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    Article  CAS  Google Scholar 

  38. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  39. Zadeh, J.N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2011).

    Article  CAS  Google Scholar 

  40. Salis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  Google Scholar 

  41. Benes, V. & Castoldi, M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50, 244–249 (2010).

    Article  CAS  Google Scholar 

  42. Selinger, D.W. Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res. 13, 216–223 (2003).

    Article  CAS  Google Scholar 

  43. Richards, J., Sundermeier, T., Svetlanov, A. & Karzai, A.W. Quality control of bacterial mRNA decoding and decay. Biochimica et Biophysica Acta. 1779, 574–582 (2008).

    Article  CAS  Google Scholar 

  44. Molinaro, M. & Tinoco, I. Use of ultra stable UNCG tetraloop hairpins to fold RNA structures: thermodynamic and spectroscopic applications. Nucleic Acids Res. 23, 3056–3063 (1995).

    Article  CAS  Google Scholar 

  45. Tolia, N.H. & Joshua-Tor, L. Strategies for protein coexpression in Escherichia coli. Nat. Methods 3, 55–64 (2006).

    Article  CAS  Google Scholar 

  46. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 1–12 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to F. Aldaye who had a leading role in this work. This work was supported by the Enerbio-Tuck Foundation and the Institut Français du Pétrole Energies Nouvelles (to C.J.D.); by the Agence Nationale de la Recherche France, Institut National de la Santé et de la Recherche Médicale (Unité 1001)–Institut National de Recherche en Informatique et en Automatique projet d'envergure, and an Axa Foundation Chair on Longevity (to A.B.L.); and by the Wyss Institute for Biologically Inspired Engineering and support from the Department of the Army W911NF-09-1-00226 (to P.A.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated extensively in developing the protocol described in this paper.

Corresponding authors

Correspondence to Pamela A Silver or Ariel B Lindner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delebecque, C., Silver, P. & Lindner, A. Designing and using RNA scaffolds to assemble proteins in vivo. Nat Protoc 7, 1797–1807 (2012). https://doi.org/10.1038/nprot.2012.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.102

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research